### **APPENDIX T**



# Miner Flat Dam Left Abutment Ridge Seepage Analysis, April 1997

GOLDER ASSOCIATES, VOLUMES 1 THRU II OF II

FEBRUARY 2007

#### Golder Associates Inc.

200 Union Boulevard, Suite 500 Lakewood, CO USA 80228 Telephone (303) 980-0540 Fax (303) 985-2080



# MINER FLAT DAM LEFT ABUTMENT RIDGE SEEPAGE ANALYSIS

# **VOLUME II OF II**

Prepared for:

Morrison-Maierle/CSSA 910 Helena Avenue Helena, Montana

Prepared by:

Golder Associates Inc. 200 Union Blvd., Suite 500 Lakewood, Colorado 80228

Distribution:

Copy - Morrison-Maierle/CSSA
 Copy - Golder Associates Inc.



April 1997

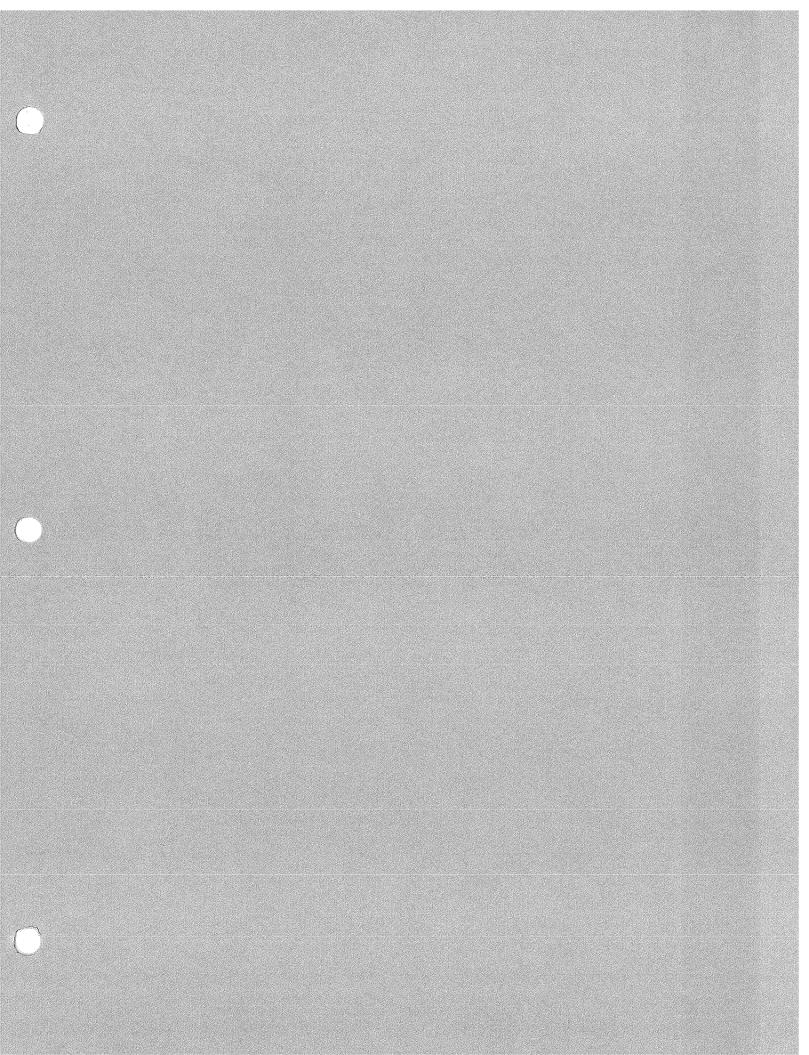
943-2769

APPENDIX F

**PACKER TESTS** 

| APPENDIX | F |
|----------|---|
| -1-      |   |

### April 1997


Summaries of packer test analytical results are presented in Appendix F. Results are presented by borehole and hydraulic conductivity values are given by depth of test interval. When available three values are given; a low, a high, and a regression value calculated from the slope of the line defined by at least two constant-head steps. The low and high values were calculated from the slope of the lowest and highest constant-head steps and the plot origin (0,0). In the cases when only one step of a constant head test was conducted, the calculated hydraulic conductivity was presented as a "low" value.

The full set of analyses is located in Appendix F. The constant head analyses consist of three pages: a data input page, a graph of the raw data, and a calculation page. The data input page contains the individual test parameters such as depth of the interval and static water level, as well as the raw data. Only a small portion of the raw data is shown at the bottom of the data input page due to space limitations. The times, flow rates and pressure head data were used for the data plot and for picking appropriate corresponding pressures and flow rates. Three- and five-point moving averages were calculated to aid in picking appropriate values in the case of unstable or fluctuating data. The moving-average data were used only for the purpose of data assessment and smoothing particularly variable data, and were not applied to the plots or analyses.

The second page contains a graph of the raw data and a list of the values chosen for input into the steady-state (Thiem) equation. The number of data points corresponds to the number of steps conducted for that particular test interval.

Page three of the analysis contains a graph of the pressure head and flow rate picks from the data. Up to three lines, representing the low, high, and a linear regression, were used for the slope calculation. Below the graph is shown the steady-state equation and the values used for the analysis. The resulting hydraulic conductivity (K) values are shown at the bottom of the sheet.

### **Golder Associates**



**Packer Testing Results Borehole MF 218A** 

| Interval # |                     | Interval Depth           | l Depth |             | Lithology |          |          | Hydraulic Conductivity         | onductiv         | ity      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|---------------------|--------------------------|---------|-------------|-----------|----------|----------|--------------------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | L                   | Top                      | Bot     | ttom        |           |          | feet/min |                                |                  | cm/sec   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (fbtc) <sup>1</sup> | (elevation) <sup>2</sup> | (fbtc)  | (elevation) |           | Low      | High     | High Stregression <sup>3</sup> | Low <sup>4</sup> | High     | Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                     |                          |         |             |           |          |          |                                |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15         | 4.75                | 6102.77                  | 29.62   | 6077.90     | Sandstone | 2.28E-03 |          |                                | 1.16E-03         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14         | 29.25               | 6078.27                  | 54.12   | 6053.40     | Sandstone | 2.98E-04 | 3.15E-04 | 4.11E-04                       | 1.52E-04         | 1.60E-04 | 2.09E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13         | 53.75               | 6053.77                  | 78.62   | 6028.90     | Sandstone | 5.54E-05 |          |                                | 2.81E-05         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10         | 77.58               | 6029.94                  | 102.94  | 6004.58     | Sandstone | 8.37E-04 | 1.08E-03 | 4.68E-04                       | 4.25E-04         | 5.49E-04 | 2.38E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6          | 102.41              | 6005.11                  | 127.77  | 5979.75     | Sandstone | 3.12E-04 | 5.43E-04 | 6.89E-04                       | 1.59E-04         | 2.76E-04 | 3.50E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ~          | 127.85              | 5979.67                  | 152.72  | 5954.80     | Sandstone | 9.63E-04 |          |                                | 4.89E-04         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7          | 152.55              | 5954.97                  | 177.42  | 5930.10     | Sandstone | 2.35E-04 | 4.93E-04 | 7.01E-04                       | 1.19E-04         | 2.50E-04 | 3.561:-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6          | 177.25              | 5930.27                  | 202.12  | 5905.40     | Sandstone | 1.31E-04 |          |                                | 6.65E-05         |          | and the second s |
| 5          | 202.05              | 5905.47                  | 226.75  | 5880.77     | Sandstone | 2.84E-05 |          |                                | 1.44E-05         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4          | 225.58              | 5881.94                  | 250.94  | 5856.58     | Sandstone | 3.76E-05 | 8.09E-05 | 1.28E-04                       | 1.91E-05         | 4.11E-05 | 6.48E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3          | 251.95              | 5855.57                  | 276.75  | 5830.77     | Sandstone | 3.44E-04 | 8.21E-04 | 9.06E-04                       | 1.75E-04         | 4.17E-04 | 4.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2          | 276.75              | 5830.77                  | 301.12  | 5806.40     | Sandstone | 7.13E-08 | 2.99E-07 |                                | 3.62E-08         | 1.52E-07 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -          | 301.22              | 5806.30                  | 326.09  | 5781.43     | Sandstone | 5.20E-03 | 5.15E-03 |                                | 2.64E-03         | 2.62E-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12         | 326.09              | 5781.43                  | 341.09  | 5766.43     | Sandstone | 1.85E-03 |          |                                | 9.40E-04         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ξ          | 334.45              | 5773.07                  | 351.70  | 5755.82     | Sandstone | 2.23E-06 |          |                                | 1.14E-06         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                     |                          |         |             |           |          |          |                                |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>1</sup> Feet below top of casing. <sup>2</sup> Feet above mean sea level

<sup>3</sup> Regression analysis does not include origin as a point. <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.

218A

061.1972-614

96/00/1

| 0.02 1.06 0.02 1.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0                              |
|---------------------------------------------------------------------------------------|
|                                                                                       |
| 003 2.04 0.03<br>0.04 2.10 0.00<br>0.04 2.22 0.03<br>0.04 2.23 0.02<br>0.04 2.34 0.04 |

Average Q (gal/min)

Applied Head  $\Delta$  time (fect of water (minutes)

Average Q (gal/min)

**5 Point Moving Averages** 

Moving Averages

19.74 19.74

Above Below

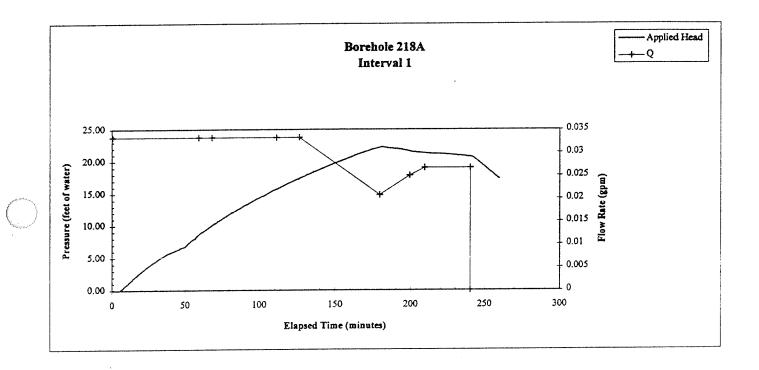
320.00

Vertical Depth (ft)

Bottom of interval

325.83

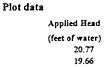
ertical depth of bottom of interval (ft)


 $\begin{array}{c} 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\$ 

 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

**Golder Associates** 

218A01.CHA, hiput Data

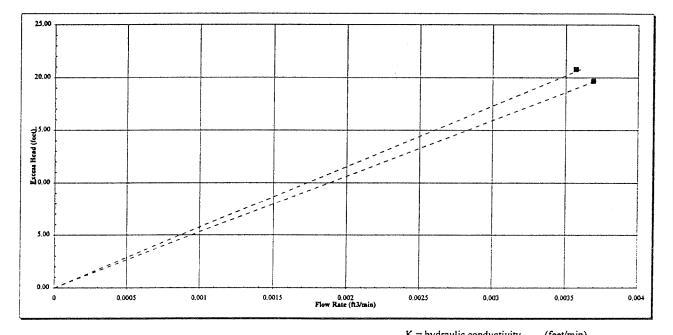

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 20.769          | 0.0267        |
| 19.659          | 0.0276        |



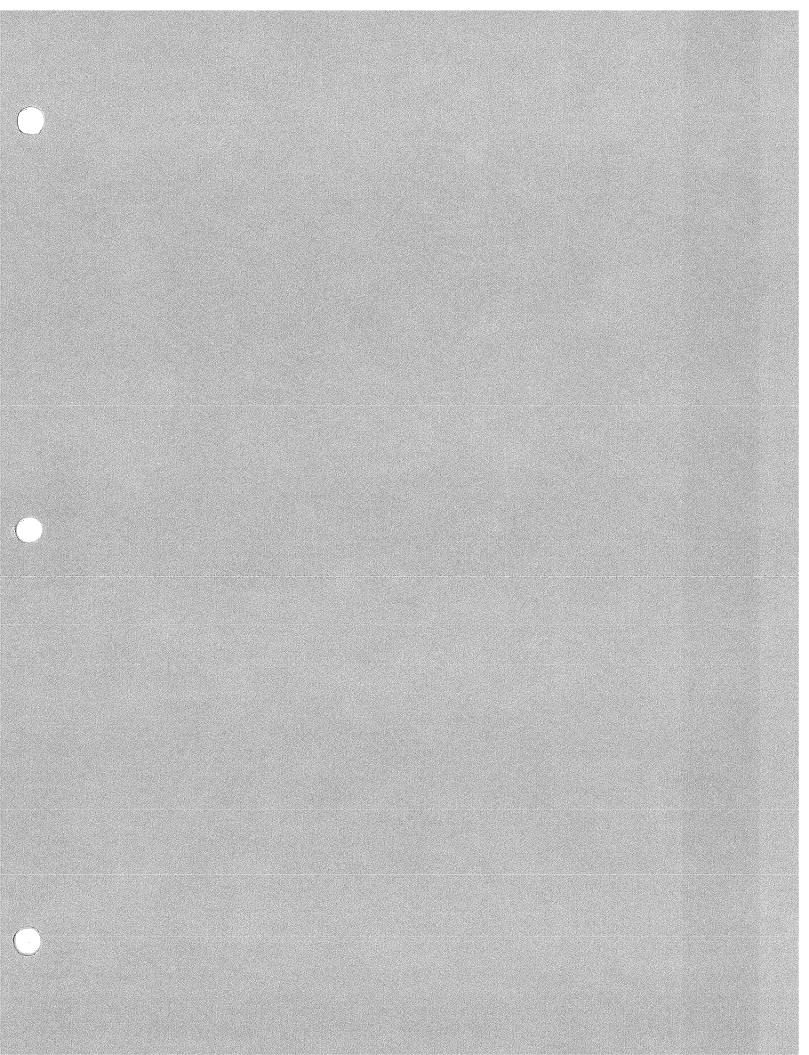
| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole Interval Number

.




218A

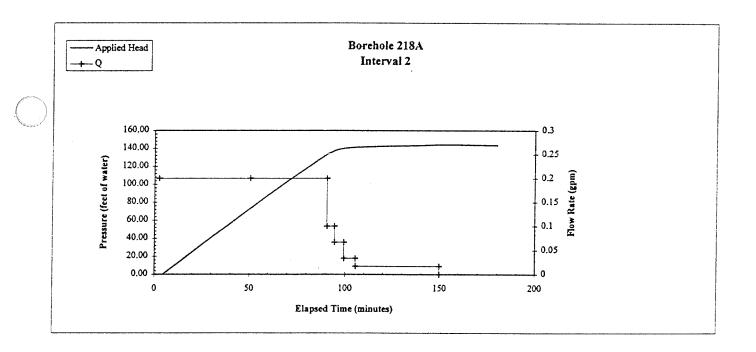

1

Flow Rate (Q) (gal/min) 0.027 0.028





| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | Q = Flow<br>he = App    | lied head<br>h of interva |                              | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|-----------------------------------------|-------------------------|---------------------------|------------------------------|--------------------------------------------------------------------|
| Range of l | bydraulic conductivity                  |                         |                           |                              |                                                                    |
| K =        | 2.6E-03 cm/s<br>5.2E-03 feet/min        | Q =<br>h <sub>e</sub> = | 0.0043<br>0.0267          | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | <b>2.6E-03 cm/s</b><br>5.2E-03 feet/min | Q =<br>h <sub>e</sub> = | 0.0044<br>0.0276          | ft <sup>3</sup> /min<br>feet |                                                                    |




| VIJONO                                                        |                                                  |                                     |                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                    |                                       |                                                                                       |                                                | χ                       | 0111665-686            |
|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|------------------------|
| Cllent<br>Site<br>Project No.                                 | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691 | lerte/CSSA                          |                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                    |                                       |                                                                                       |                                                |                         |                        |
| Borehole<br>Test Number<br>Test Date                          | 218A<br>2<br>30-Oct-95                           |                                     |                                                                                          |                                 | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | le packer<br>le                                 |                                    |                                       |                                                                                       |                                                |                         |                        |
| Borehole diameter<br>Borehole radius<br>Test section location |                                                  |                                     | inches<br>feet<br>feet below top of casing                                               | 20                              | vertical depth<br>lepth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | calculation:<br>Top of interval<br>Vertical     | n:<br>erval<br>Vertical Depth (ft) | liole depth (A)                       | Bottom of interval<br>Vert                                                            | rval<br>Verticat Deoth (ft)                    |                         |                        |
| Length of test interval<br>Gauge Depth<br>Static Water Level  | Bette                                            | 301.22<br>24.47<br>205.75<br>206.28 | feet below top of casing<br>feet<br>feet below top of casing<br>feet below top of casing | 30 <u>9</u> 0 90                | Abuve 270.00 Abuve<br>Below 280.00 Below<br>Vertical depth of top of Interval (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 270.00 Above<br>280.00 Below<br>f interval (ft) |                                    | Above<br>Bolow<br>Vertical depth of t | Above 300,00 Above<br>Balow 310,00 Below<br>Vertical depth of bottom of interval (ft) | Above 299.76<br>Below 309.75<br>11 (ft) 300.98 |                         |                        |
| General Lithology<br>Sandstone                                |                                                  |                                     |                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                    |                                       |                                                                                       |                                                |                         |                        |
| Start Time                                                    | 14.07:36                                         |                                     |                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 3 Poli                             | <b>3 Point Moving Averages</b>        | 803                                                                                   | 5 Point                                        | 5 Point Moving Averages | 28 H                   |
| Clock<br>Time                                                 | Elapsed time Elapsed time<br>(hours) (minutes)   | Elapsed time<br>(minutes)           | Measured Head<br>(feet of water)                                                         | Applied Head<br>(feet of water) | Q<br>(gal/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | Applied Head<br>(feet of water)    | ∆ time<br>(mins)                      | Average Q<br>(gal/min)                                                                | Applied Head<br>(feet of water)                | ∆ time<br>(minutes)     | Average Q<br>(gal/min) |
| 14.07.36                                                      | 000                                              | 0.00                                | E0.0                                                                                     | £0.0                            | - Andreas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                    |                                       |                                                                                       | ,                                              |                         |                        |
| 14.07.40                                                      | 000                                              | 0.06<br>0.12                        | 0.02                                                                                     | 0.02<br>-0.03                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 100                                |                                       |                                                                                       |                                                |                         |                        |
| 14.07.47                                                      | 00.0                                             | 0.18                                | £0'0                                                                                     | 0.03                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.0                                | 0000<br>9000                          | 0.0                                                                                   | 0.02                                           | 000                     | 50 0                   |
| 14:07:54<br>14:07:58                                          | 10.0                                             | 0.30                                |                                                                                          | 0.04                            | 3.<br>- 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0.03                               | 0.0                                   | 00.0                                                                                  | 0.01                                           | 0.00                    | 000                    |
| 14:08:01                                                      | 10.0                                             | 0.42                                | -0.02                                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.02                               | 8.8                                   | 0.0                                                                                   | 10.0                                           | E0:0-                   | 0.00                   |
| 14.08.08                                                      | 10.0                                             | 0.54                                |                                                                                          | 0.00                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 000                                | 60.77<br>100.00                       | 00.0<br>00.0                                                                          | 10.0                                           | 10.0                    | 000                    |
| 14.08:12<br>14.08:19                                          | 10.0                                             | 0.60<br>0.72                        | 0.03                                                                                     | 0.03<br>00.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10:0                               | 0.00                                  | 0.00                                                                                  | 000                                            | 0.03                    | 00.0                   |
| 14.08.23                                                      | 0.01                                             | 0.71                                | 10'0                                                                                     | 10.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.00                               | -0-02<br>0-00                         | 00.0                                                                                  | 0.0                                            | 0.00                    | 000                    |
| 14:08:26                                                      | 10.0                                             | 0.84                                | 0.00                                                                                     | 0.00                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10.0-                              | <b>10</b>                             | 8.0                                                                                   | 00.0                                           | -0.06<br>0.02           | 00.0                   |
| 14:08.37                                                      | 0.02                                             | 6.79<br>1 07                        | 0.03                                                                                     | -0.03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10.0-                              | 0.01                                  | 00:0                                                                                  | 00'0                                           | 0.00                    | 0.00                   |
| 14.08.44                                                      | 0.02                                             | H                                   | 10.0                                                                                     | 10.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 000                                | 0.04                                  | 0.0                                                                                   | 8.0                                            | 10.0                    | 0.00                   |
| 14.08:48<br>14.04:43                                          | 0.02                                             | 1.20                                | 10.0                                                                                     | 10.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.01                               | 0.00                                  | 00.0                                                                                  | 0.01                                           | 000                     | 00.0                   |
| 14.01.59                                                      | 0.02                                             | 97.1                                | 10'0                                                                                     | 10:0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10.0                               | 0.00                                  | 00.00                                                                                 | 0.01                                           | 0.00                    | 00.0                   |
| 14:09:02                                                      | 0.02                                             | Ŧ                                   | 10.0                                                                                     | 10.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.01                               | 000                                   | 0.00                                                                                  | 0.01                                           | 0.00                    | 00.0                   |
| 14:09:10                                                      | 0.03                                             | 1.56                                | 0.01                                                                                     | 0.01                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10:0                               | 0000                                  | 00.0                                                                                  | 10:0                                           | 00.00                   | 00.0                   |
| 14:09:13<br>14:09:17                                          | 0.03                                             | 1.62                                | 10'0                                                                                     | 0.01                            | Provide<br>Control of the Control of th |                                                 | 00.00                              | <b>9</b> 0.0                          | 00.0                                                                                  | 00.0                                           | 00:0                    | 00.0                   |
| 14:09:24                                                      | E0 0                                             | 01.1                                | 100                                                                                      | 10 0<br>10 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.00                               | 0.00                                  | 0.00                                                                                  | 10:0-                                          | <b>1</b> 0:07           | 00.0                   |
| 14:09.28                                                      | £0:0                                             | 1.86                                | E0.0-                                                                                    | 0.03                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 70.04                              | 8.6                                   | <b>0</b> 00                                                                           | 0.0                                            | 0.00                    | 00'0                   |
| 2E.00.91                                                      | 0.03                                             | 1.98                                | 10:0                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.0                                | 0.0                                   | 00.0                                                                                  | 00.0                                           | <b>1</b> 0              | 0.0                    |
| 14:09:38                                                      | 0.03                                             | 2.04                                | 10.0                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10.0                               | 0.0                                   | 0.0                                                                                   | 000                                            | 00'0<br>10'0            | 00.0                   |
| 14:09:42                                                      | 8.0                                              | 2.10                                | 0.01                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0.01                               | 0.00                                  | 00.0                                                                                  | 0.01                                           | 00.0                    | 0.0                    |
| 14.09.51                                                      | 100                                              | 2.28                                | 100                                                                                      | 10:0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10.0                               | 0.00                                  | 0.00                                                                                  | 0.01                                           | 0.00                    | 00.0                   |
| 14.09.56                                                      | 0.04                                             | 2.34                                | 10'0                                                                                     | 10:0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 10.0                               | 0.00                                  | 0.00                                                                                  | 10:0                                           | 00.0                    | 10.0                   |
|                                                               |                                                  |                                     |                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                    | <b>A</b>                              | 10.0                                                                                  | 10.0                                           | 00.0                    | 100                    |

**Golder Associates** 

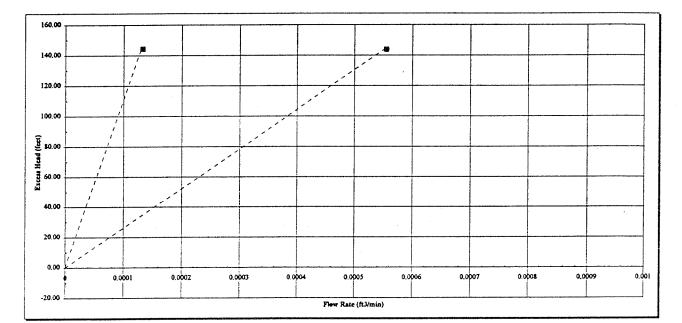
218A02.CHA, Input Data

| •             |
|---------------|
| Flow Rate (Q) |
| (gal/min)     |
| 0.0010        |
| 0.0042        |
|               |



;

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |


2

Borehole 218A Interval Number

Plot data



Flow Rate (Q) (ft<sup>3</sup>/min) 0.00013 0.00055



 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

Range of hydraulic conductivity

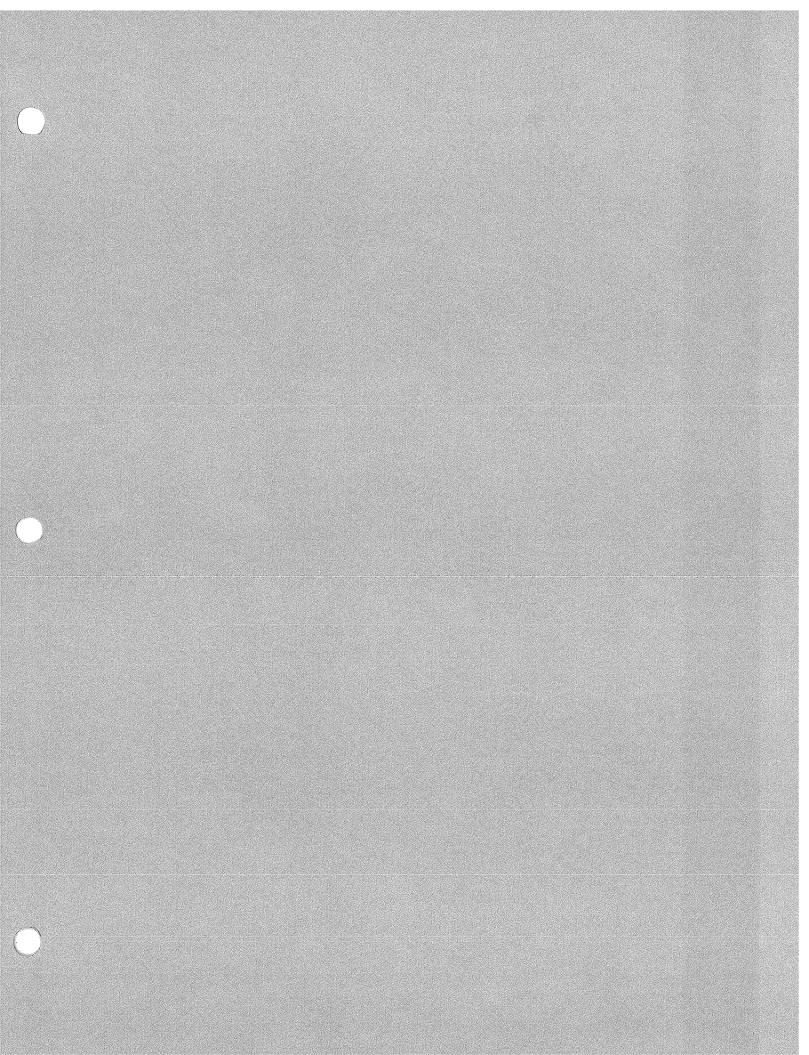
| K = | 1.8E-08 cm/s     | Q =              | 0.0002   | ft <sup>3</sup> /min |
|-----|------------------|------------------|----------|----------------------|
|     | 3.6E-08 feet/min | h <sub>e</sub> = | 144.1600 | feet                 |
| K = | 7.7E-08 cm/s     | Q =              | 0.0007   | ft <sup>3</sup> /min |
|     | 1.5E-07 feet/min | h <sub>e</sub> = | 143.6700 | feet                 |

(feet/min)

(ft<sup>3</sup>/min)

(feet)

(feet)


(feet)

K = hydraulic conductivity

L = length of interval tested

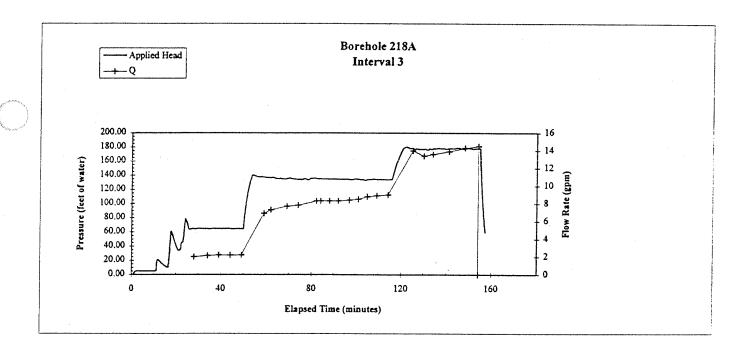
Q = Flow ratehe = Applied head

r = borehole radius



| Clicat<br>Site<br>Project No.                                                                                                 | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | ierle/CSSA                                                    |                                                                                                                                        |                                 |                                                                                                                                                           |                                                                                                                                |                                 |                                                          |                                                                                                                                |                                                             |                |                         |                        |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|-------------------------|------------------------|
| Borcholc<br>Test Number<br>Test Date                                                                                          | 218A<br>3 retest<br>17-Nov-95                    |                                                               |                                                                                                                                        |                                 | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole                                                                                    | ddie packer<br>bole                                                                                                            |                                 |                                                          |                                                                                                                                |                                                             |                |                         |                        |
| Borchole diameter<br>Borchole radius<br>Test section location<br>Length of test Interval<br>Gauge Depth<br>Static Water Level | Top<br>Bottom                                    | 3.78<br>0.16<br>250.58<br>275.94<br>25.36<br>214.20<br>206.28 | inches<br>fect<br>fect below top of casing<br>fect below top of casing<br>fect<br>fect below top of casing<br>fect below top of casing |                                 | True vertical depth calculation:<br>Top of interval<br>Hole depth (ft) 250.00 Above<br>Above 260.00 Below<br>Below Vertical depth of top of interval (ft) | calculation:<br>Top of Interval<br>Vertical Depth (f)<br>250.00 Above 249.81<br>260.00 Below 259.8<br>pof Interval (ft) 250.39 |                                 | Hole depth (ft)<br>Above<br>Bolow<br>Vertical depth of I | Hole depth (ft)<br>Bottom of interval<br>Above 270.00 Abov<br>Babove 280.00 Belov<br>Vertical depth of bottom of interval (ft) | rval<br>Vertical Depth (ft)<br>Above 269.79<br>Below 279.74 | <b>○ 8 8</b> 6 |                         |                        |
| General Lithology<br>Sandstone<br>Start Time                                                                                  | 16.20.57                                         |                                                               |                                                                                                                                        |                                 |                                                                                                                                                           | 2                                                                                                                              | Polic                           | 3 Polint Moving Averages                                 | IJ                                                                                                                             | Í.                                                          | 5 Point Me     | 5 Point Moving Averages | 5                      |
| Clock<br>Time                                                                                                                 | Elapsed time<br>(hours)                          | Elapsed time Elapsed time<br>(hours) (minutes)                | ie Measured Head<br>(feet of water)                                                                                                    | Applied Head<br>(feet of water) | i Q<br>(gal/min)                                                                                                                                          | Al<br>Al                                                                                                                       | Applied Head<br>(feet of water) | ∆ time<br>(mins)                                         | Average Q<br>(gal/min)                                                                                                         | Applied Head<br>(feet of water)                             | Head (n        | ∆ time<br>(minutes)     | Average Q<br>(gal/min) |
| 16:20:57                                                                                                                      | 00:0                                             | 00.0                                                          | 0.03                                                                                                                                   | 0.03                            |                                                                                                                                                           |                                                                                                                                |                                 |                                                          |                                                                                                                                |                                                             |                |                         | 1                      |
| 16:21.04                                                                                                                      | 00.0                                             | 0.0<br>0.12                                                   | 10.0-                                                                                                                                  | 10:0-<br>20:0                   |                                                                                                                                                           |                                                                                                                                | 10.0                            | 000                                                      | 0.00                                                                                                                           |                                                             |                |                         |                        |
| 16:21:0 <b>8</b><br>14:21:14                                                                                                  | 00'0                                             | 0.18                                                          | 10'0-                                                                                                                                  | 10:0-                           |                                                                                                                                                           |                                                                                                                                | 0.02                            | -0.02                                                    | 00:0                                                                                                                           | 0.02                                                        | 2              | 0.04                    | 0.00                   |
| 16:21:19                                                                                                                      | 10.0                                             | 90.36                                                         | 0.03                                                                                                                                   | 50 O                            |                                                                                                                                                           |                                                                                                                                | 0.02                            | <b>10.0</b>                                              | 0.00                                                                                                                           | 0.03                                                        | ~              | 0.00                    | 00'0                   |
| 16:21:22                                                                                                                      | 0.01                                             | 0.42                                                          |                                                                                                                                        | 0.05                            |                                                                                                                                                           | -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                         | 0.04                            | 70.0                                                     | 000                                                                                                                            | 0.0                                                         |                | 0.04                    | 0.0                    |
| 16.21.29<br>16.21.21                                                                                                          | 10.0                                             | 0.54                                                          | 0.03                                                                                                                                   | 0.03                            |                                                                                                                                                           |                                                                                                                                | 0.04                            | 8.0                                                      | 0.00                                                                                                                           | 60 G                                                        | • •            | 0.29                    | 8 00<br>00<br>00<br>00 |
| 16.21.40                                                                                                                      | 10.0                                             | 0.0                                                           | 0.05<br>0.12                                                                                                                           | 0.05                            |                                                                                                                                                           |                                                                                                                                | 0.13                            | 0.29                                                     | 0.00                                                                                                                           | 0.22                                                        | ~              | 0.60                    | 0.00                   |
| 16.21.44                                                                                                                      | 10:0                                             | 0.78                                                          | 0.0                                                                                                                                    | 0.65                            |                                                                                                                                                           |                                                                                                                                | 0.64                            | 99 G                                                     | 00.0                                                                                                                           | 0.40                                                        | -              | 0.93                    | 0.0                    |
| 16.21.47                                                                                                                      | 10'0                                             | 0.84                                                          | 0.96                                                                                                                                   | 96.0                            |                                                                                                                                                           |                                                                                                                                | 0.88                            | 86.0                                                     | 0.00                                                                                                                           | 190                                                         |                | 0.76                    | 00.0<br>00.0           |
| 16.21.53                                                                                                                      | 0.02                                             | 8.0                                                           | 1.02                                                                                                                                   | 1.02                            |                                                                                                                                                           |                                                                                                                                | 1.02                            | 0.12                                                     | 00:0                                                                                                                           | 1.07                                                        |                | 16.0                    | 0.0                    |
| 16:22:05                                                                                                                      | 0.02                                             | 20.1                                                          | 1.04                                                                                                                                   | 10.1                            |                                                                                                                                                           |                                                                                                                                | 1.24                            | 0.60                                                     | 0.00                                                                                                                           | 1.41                                                        | _              | 1.42                    | 0.00                   |
| 16.22.09                                                                                                                      | 0.02                                             | 2                                                             | 2.38                                                                                                                                   | 70'I                            |                                                                                                                                                           |                                                                                                                                | 1.70                            | 9                                                        | 0.00                                                                                                                           | 1.71                                                        | -              | 1.74                    | 0.00                   |
| 16.22.13                                                                                                                      | 0.02                                             | 1.26                                                          | 2.81                                                                                                                                   | 2.81                            |                                                                                                                                                           |                                                                                                                                | 2.13                            | 1.10                                                     | 0000                                                                                                                           | 2.24                                                        |                | 121                     | 0.00                   |
| 16.22.20                                                                                                                      | 0.02                                             | 1.34                                                          | 3.29                                                                                                                                   | 3.29                            |                                                                                                                                                           |                                                                                                                                | 1.23                            | 0.77                                                     | 0.00                                                                                                                           | 3.20                                                        |                | 9<br>5                  | 8.0                    |
| 16 22 21                                                                                                                      | 0.02                                             | 1.44                                                          | 3.56                                                                                                                                   | 3,51                            |                                                                                                                                                           |                                                                                                                                | 3.60                            | 0.64                                                     | 0.00                                                                                                                           | 3.5                                                         |                | Ē                       | 000                    |
| 16.22.34                                                                                                                      | 0.03                                             | 1 62                                                          |                                                                                                                                        | *                               |                                                                                                                                                           |                                                                                                                                | 3.86                            | 0.54                                                     | 0.00                                                                                                                           | 3,84                                                        | _              | 6.0                     | 0.00                   |
| 16:22:38                                                                                                                      | 0.03                                             | 1.68                                                          | 428                                                                                                                                    | 17                              |                                                                                                                                                           | 7. j.                                                                                                                          | 4.11                            | <b>1</b>                                                 | 0.00                                                                                                                           | 4.07                                                        | _              | 0.88                    | 0.00                   |
| 16.22:41                                                                                                                      | 0.03                                             | 1.74                                                          | 4.46                                                                                                                                   | 4.46                            |                                                                                                                                                           | 1                                                                                                                              | 11                              | 50 M                                                     | 0.0                                                                                                                            | 4.28                                                        |                | 0.68<br>0.63            | 00.0<br>00.0           |
| 45-00-91                                                                                                                      | 0.03                                             | 1.86                                                          | 4.62                                                                                                                                   | 4.62                            |                                                                                                                                                           |                                                                                                                                | 4.61                            | 0.27                                                     | 0.00                                                                                                                           | 4.59                                                        |                | 0.57                    | 8 8                    |
| 16.22.59                                                                                                                      | 600                                              | 100                                                           | 4.4<br>2.4                                                                                                                             | 4.74                            |                                                                                                                                                           |                                                                                                                                | 4.74                            | 0.23                                                     | 0.00                                                                                                                           | 4.72                                                        |                | 0.49                    | 00.0                   |
| 16.23.03                                                                                                                      | 0.0                                              | 2.10                                                          |                                                                                                                                        |                                 |                                                                                                                                                           |                                                                                                                                | <b>6.15</b>                     | 0.22                                                     | 0.00                                                                                                                           | 4.82                                                        |                | <b>SE.0</b>             | 0.00                   |
| 16:23:10                                                                                                                      | 0.04                                             | 1.11                                                          | 4.97                                                                                                                                   | 4.97                            |                                                                                                                                                           |                                                                                                                                | 76 P                            | 0.12                                                     | 0.0                                                                                                                            | 16.9                                                        |                | 0.32                    | 0.00                   |
| 16.23.14                                                                                                                      | 0.0                                              | 2.28                                                          | 5.05                                                                                                                                   | 5.05                            |                                                                                                                                                           |                                                                                                                                | 5.03                            | 0.11                                                     | 8.0                                                                                                                            | 105                                                         |                | CT 0                    | 8.6                    |
| 10.23.17                                                                                                                      | 0.04                                             | 2.34                                                          | 5.08                                                                                                                                   | 5.08                            |                                                                                                                                                           |                                                                                                                                | 5.09                            | 0.07                                                     | 0.00                                                                                                                           | \$.08                                                       |                | 0.20                    | 0.0                    |
|                                                                                                                               |                                                  |                                                               |                                                                                                                                        |                                 |                                                                                                                                                           |                                                                                                                                |                                 |                                                          |                                                                                                                                |                                                             |                |                         |                        |

**Oolder Associates** 

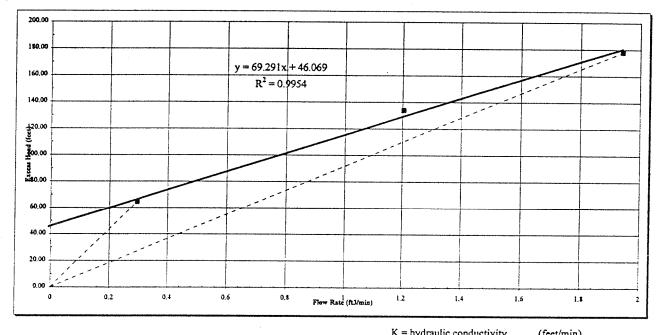

218A03.CHA, Input Data

0111612-194

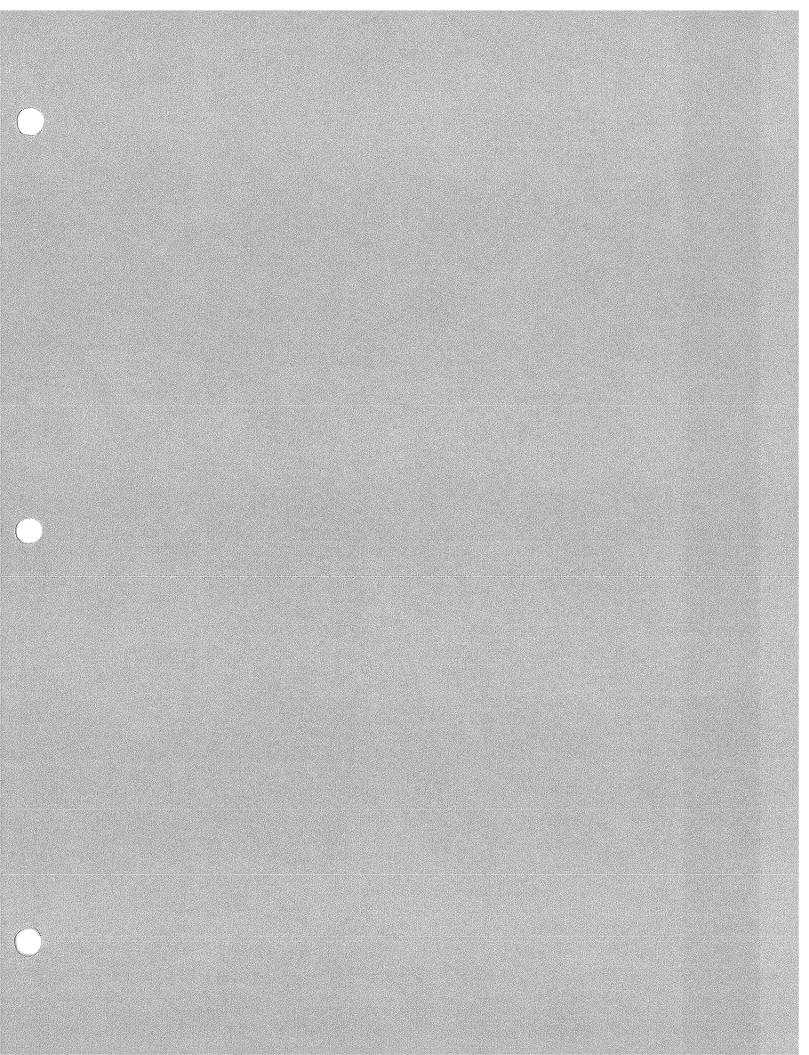
 $\bigcirc$ 

130%

| Applied Head     | Flow Rate (Q)     |
|------------------|-------------------|
| (feet of water)  | (gal/min)         |
| 64.46            | 2.2000            |
| 133.90<br>177.94 | 9,0000<br>14.5000 |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |


Borehole 218A Interval Number 3 retest

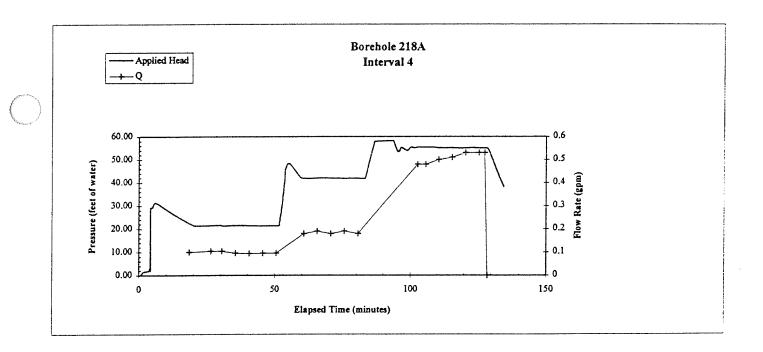
#### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 64.46           | 2.2000        | 0.2941                 |
| 133.90          | 9.0000        | 1.2033                 |
| 177.94          | 14.5000       | 1.9387                 |



| K = 1/   | /(2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | Q = Flow<br>he = App    | lied head<br>h of interval t |                              | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|-------------------------------------------|-------------------------|------------------------------|------------------------------|--------------------------------------------------------------------|
| Range of | bydraulic conductivity                    |                         |                              |                              |                                                                    |
| K =      | 8.9E-05 cm/s<br>1.7E-04 feet/min          | Q =<br>h <sub>e</sub> = | 0.3532<br>64.4600            | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | <b>2.1E-04 cm/s</b><br>4.2E-04 feet/min   | Q =<br>h <sub>e</sub> = | 2.3279<br>177.9400           | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | <b>2.33E-04 cm/s</b><br>4.60E-04 feet/min | Trendlin                | 69.29                        | )                            |                                                                    |



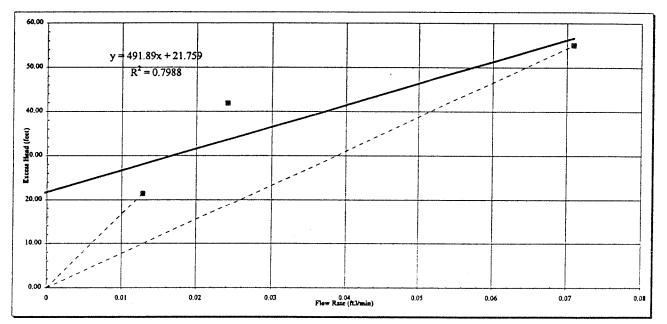

| 0[1]1672-EPP |                                                  |                                                                        |                                                                      |                                                                                          | S Point Maving Assessed                      | Δ time Average Q<br>(minutes) (gal/mln)      |              |                                           | 0.00 0.00    |                        |         | 0.00 0.00           |                   |                | 000 000         |                      |             | 0.00 0.00   |                    |         | 0.40 0.00 |            |            |          |            |        | 0.10 0.00 |                    |              |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------|-------------------------------------------|--------------|------------------------|---------|---------------------|-------------------|----------------|-----------------|----------------------|-------------|-------------|--------------------|---------|-----------|------------|------------|----------|------------|--------|-----------|--------------------|--------------|
|              |                                                  |                                                                        | a of interval<br>Vertical Depth (ft)                                 | 249.41<br>259.8<br>250.75                                                                | C Point                                      | Applied Head<br>(feet of water)              |              |                                           | 0.0          | 6.03                   | 0.03    | 0.0-<br>0.0-        | £0.0 <del>-</del> | 10.0           | 0.17            | 0.36                 | 0.55        | 0.93        | 1.06               | 1.15    | 271       | 5 <b>1</b> | 1.44       | 1.47     | <u> </u>   | 1.52   | *C1       | 1.59               | 191<br>1.65  |
|              |                                                  |                                                                        | tton                                                                 | 250.00 Above<br>260.00 Below<br>ttom of interval (ft)                                    | Ĕ                                            | Average Q<br>(gal/min)                       |              | 500                                       | 0.00         | 0.00                   | 00'0    | 000                 | 00.0              | 80             | 0.00            | 00.0                 | 0.0         | 0.0         | 0.00               | 0.00    | 00.0      | 0000       | 0.00       | 0.00     | 0.00       | 00.0   | 0.0       | 0.00               | 00.0         |
|              |                                                  |                                                                        | Hole deptk (ft)                                                      | Above 250.00 Above<br>Below 260.00 Below<br>Vertical depth of bottom of Interval (ft)    | 3 Point Moving Averaged                      | ∆ time<br>(mins)                             |              | 80                                        | 8.0          | 8.5                    | 8.9     | 8.0                 | 10.0-             | 0.00           | 620             | 95.0                 | 0.59<br>7 C | 0.12        | 0.29               | 229     | 0.12      | 0.10       | 30.0       | 0.07     | 8          | 8 2    | 10:0      | 0.16               | 0.04<br>0.03 |
|              |                                                  |                                                                        | il Depth (ft)                                                        | 219.82<br>229.82<br>225.40                                                               | 3 Poh                                        | Applied Head<br>(feet of water)              |              | 100-                                      | <b>60.03</b> | 60 Q                   | 6.67    | 60.0-               | -0.03             | -0.03<br>-0.01 | 0.10            | 15.0                 | 4C.0        | <b>H</b> (0 | 1.05               | 1.16    | 171       | 1.40       | 1.44       | <b>4</b> | 151<br>151 | 6 T    | 57        | 1.58               | 1.63<br>1.65 |
|              |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | certical depth calculatio<br>certical depth calculatio<br>(cpth (ft) | Above 220,00 Above<br>Below 230,00 Below<br>Vertical depth of top of interval (ft)       |                                              | Q<br>(gal/min)                               |              |                                           |              |                        |         |                     |                   |                |                 |                      |             |             |                    |         |           |            | Р          |          |            |        |           |                    |              |
|              |                                                  |                                                                        |                                                                      | lect below top of casing<br>feet<br>feet below top of casing<br>feet below top of casing |                                              | i Hca Applied Head<br>vater) (feet of water) |              |                                           | - 1          | 0.03 0.01<br>0.02 0.01 |         |                     |                   |                |                 | 0.30                 | 0.89        | 66:0        | 101                | 171     | ¥E I      |            | <b>I</b> : |          |            |        |           |                    | 1.64         |
|              |                                                  |                                                                        | inches<br>feet<br>feet below t                                       | feet below f<br>feet<br>feet below f<br>feet below f                                     |                                              | : Measured Hea<br>(feet of water)            | <b>60.0-</b> | <b>10</b> 0<br><b>10</b> 0<br><b>10</b> 0 |              |                        |         | 0.0                 | 0.0               |                |                 | 0.30                 | 680         | 0.93        | 5                  | 1.26    | F         | 1.40       | *          | 151      | 1.51       | 1.57   | 1.41      | 1911               | 1.65         |
|              | rle/CSSA                                         |                                                                        | 3.78<br>0.16<br>225.58                                               | 25054<br>25.36<br>214.20<br>206.28                                                       |                                              | Elapsed time<br>(minutes)                    | 0.00         | 0.06                                      | 0.18         | 05.0<br>81.0           | 0.42    | 0.54                | 09.0              | 0.7%           | 0.84            | 96:0<br>80 t         | 1           | 1.20        | 1.26               | Ŧ       | 1.36      | 1.62       | 191        | 1.16     | 1.98       | 2.04   | 2.10      | 2.22               | 877<br>FEZ   |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>4 reicst<br>18-Nov-95                                          | Tep                                                                  |                                                                                          | II.09.29                                     | Elapsed time<br>(hours)                      | 00.0         | 00.0                                      | 0.00         | 10.0                   | 0.01    | 10.0                | 10.0              | 0.0            | 10:0            | 0.02                 | 0.02        | 0.02        | 0.02<br>0.03       | 0.02    | 0.03      | [0:0]      | 0.03       | 60.0     | 6.03       | 0.03   | 0.04      | <b>10</b> 0        | 300          |
| 73006        | Client<br>Site<br>Project No.                    | Borehole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius<br>Test section location        | Length of test interval<br>Gauge Depth<br>Static Water Level                             | General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                                | 8.09.29      | 66:20.4<br>86:00:8                        | B.09.40      | 10001                  | B:09.54 | 8:10:01<br>** 10.04 | 8:10:12           | B:10:16        | 810:19<br>510:3 | \$:10.34<br>\$:10.34 | 10.37       | 8,10.41     | 8-10-45<br>8-10-52 | 8:10.55 | B:11:03   | 90 TL 00   | 8.11.17    | 8.11.21  | B(11:28    | 101131 | SE:11:3   | B.11:42<br>B.11:46 | 2 Y II       |

**Oulder Associates** 

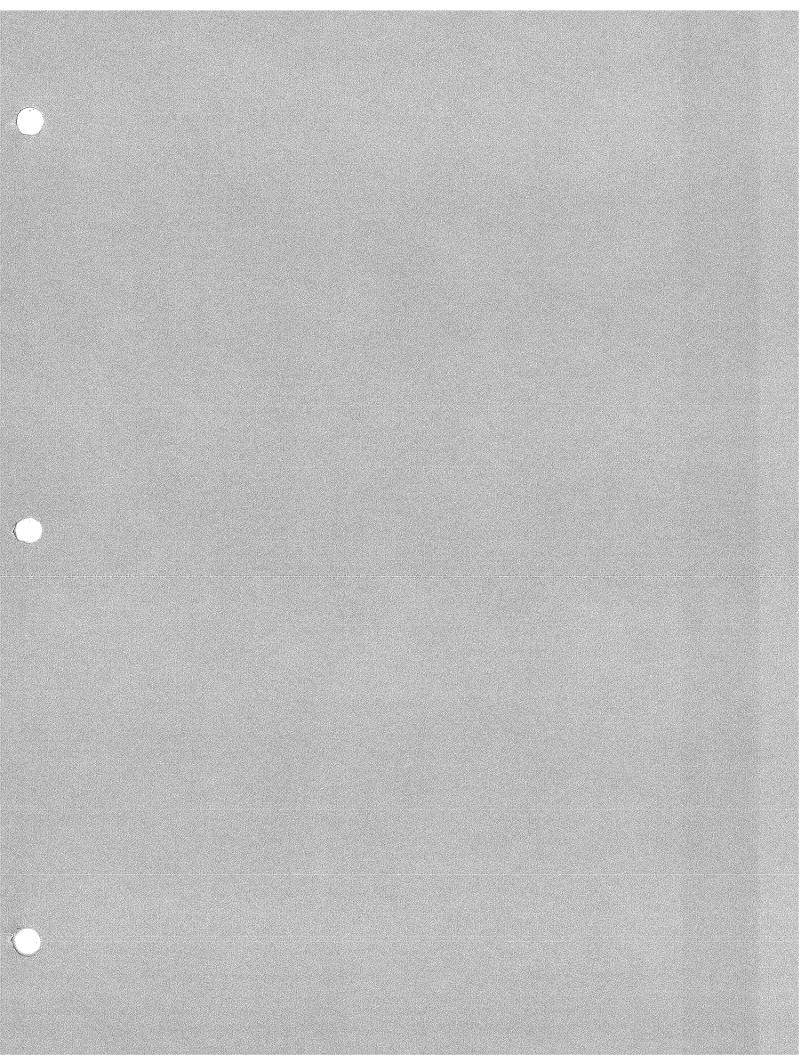
218A04 CHA, Input Data

 $\left( \right)$ 

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 21.39           | 0.0958        |
| 41.87           | 0.1800        |
| 55.01           | 0.5300        |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

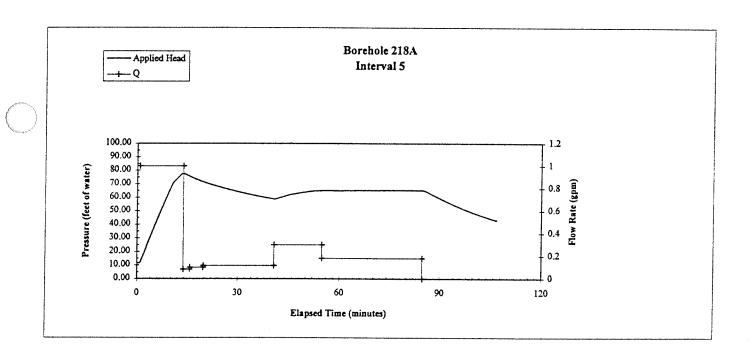

Borehole 218A Interval Number 4 retest

### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 21.39           | 0.0958        | 0.0128                 |
| 41.87           | 0.1800        | 0.0241                 |
| 55.01           | 0.5300        | 0,0709                 |



| K = 1/   | (2πL) x (Q/h <sub>c</sub> ) x ln (L/r)  | Q = Flow<br>he = App<br>L = lengt |                   |                                           | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|-----------------------------------------|-----------------------------------|-------------------|-------------------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                  |                                   |                   |                                           |                                                                    |
| K =      | 9.7E-06 cm/s<br>1.9E-05 feet/min        | Q =<br>h <sub>e</sub> =           | 0.0128<br>21.3900 | ft <sup>3</sup> /min<br>f <del>ee</del> t |                                                                    |
| K =      | <b>2.1E-05 cm/s</b><br>4.1E-05 feet/min | Q =<br>h <sub>o</sub> =           | 0.0709<br>55.0100 | ft <sup>3</sup> /min<br>feet              |                                                                    |
| K =      | 3.28E-05 cm/s<br>6.48E-05 feet/min      | Trendline Slope                   | 491.8             | 9                                         |                                                                    |




| J30%                                                                                                                          |                                                  |                                           |                                                                                                                                |                                 | Server of                                                                                                 | (marine)                                                         |                                                               |                                                     |                                                                 |                                |                               | M3-2791.130           |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|--------------------------------|-------------------------------|-----------------------|
| Client<br>Site<br>Project No.                                                                                                 | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | erle/CSSA                                 |                                                                                                                                |                                 |                                                                                                           |                                                                  |                                                               |                                                     |                                                                 |                                |                               |                       |
| Boreholc<br>Test Number<br>Test Date                                                                                          | 218A<br>5<br>31-Oct-95                           |                                           |                                                                                                                                |                                 | Tast Type:<br>Constant head, Straddle packer<br>Gauge located downhole                                    | ddie packer<br>Ibole                                             |                                                               |                                                     |                                                                 |                                |                               |                       |
| Borchole diameter<br>Borchole radius<br>Test section location<br>Length of test interval<br>Gauge Depth<br>Stater Water Level | Top<br>Bottom                                    | 3.78<br>0.16<br>202.05<br>24.70<br>194.75 | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing |                                 | True vertical depth calculation:<br>Top of interval<br>Hole depth (ft) 200.00 Above<br>Below 210.00 Below | calculation:<br>Top of interval<br>200.00 Above<br>210.00. Below | t:<br>rral<br>Verical Depit (f)<br>Above 199.8<br>Below 209.8 |                                                     | Bottom of interval<br>Vertica<br>220.00 Above<br>230.00 Below   | d Dept                         |                               |                       |
| General Lithology<br>Sandstone<br>Start Time                                                                                  | 16.05.10                                         |                                           |                                                                                                                                |                                 |                                                                                                           | (II) <b>1</b>                                                    | 3 Poi                                                         | verucal adplue of bottom<br>3 Point Moving Averages | vertical appla of bottom of interval (ft)<br>it Moving Averages | 226.57<br>5 Point              | 57<br>5 Point Moving Averages | Tages                 |
| Clock<br>Time                                                                                                                 | Elapsed time Elapsed tim<br>(hours) (minutes)    | Elapsed tim<br>(minutes)                  | Measured Head<br>(feet of water)                                                                                               | Applied Head<br>(feet of water) | Q<br>(gaVmin)                                                                                             |                                                                  | Applied Head<br>(feet of water)                               | Δ time<br>(mins)                                    | Average Q<br>(gaVmin)                                           | Applied Head<br>(feet of water | ∆ time<br>(minutes)           | Average Q<br>(galmin) |
| 16:05:10<br>16:05:14                                                                                                          | 0.0<br>0.0                                       | 00.0<br>90.0                              | 0.04                                                                                                                           | 11.57                           |                                                                                                           | en el                                                            |                                                               |                                                     |                                                                 |                                |                               | ,<br>,                |
| 16.05.17<br>16.05.21                                                                                                          | 0.0                                              | 0.12                                      | 80.0                                                                                                                           | 11.59                           |                                                                                                           | ·. *                                                             | 11.59                                                         | 10'0                                                | 00'0                                                            |                                |                               |                       |
| 16.05:28                                                                                                                      |                                                  | 0.30                                      | 90.0                                                                                                                           | 95.11<br>92.11                  |                                                                                                           | 1                                                                | 05 II<br>11 59                                                | 0.00                                                | 0.00                                                            | 11.59                          | 0.01                          | 00:0                  |
| 16:05:32<br>16:05:35                                                                                                          | 10.0                                             | 0.36                                      | 0.06<br>202                                                                                                                    | 11.59                           |                                                                                                           |                                                                  | 11.59                                                         | 0.00                                                | 0.00                                                            | 11.59                          | 0.0                           | 00.0                  |
| 16.05.42                                                                                                                      | 10'0                                             | 1.0                                       | 0.0                                                                                                                            | 90,11<br>92,11                  |                                                                                                           | e n<br>Value                                                     | 11.59                                                         | 8.0                                                 | 0.0                                                             | 11.59                          | 0.00                          | 0.0                   |
| 16.05.53                                                                                                                      | 0.0                                              | 0.72                                      | 90.0                                                                                                                           | 11.59                           |                                                                                                           | 11                                                               | 95.11<br>92.11                                                | 0.00                                                | 000                                                             | 11.59                          | 0.0<br>0.0                    | 0.00<br>0.20          |
| 16:05:37                                                                                                                      | 10.0                                             | 0.78                                      | 90.00                                                                                                                          | 95.11                           | -                                                                                                         |                                                                  | 11.59                                                         | 00.0                                                | 0.33                                                            | 11.59                          | -0.02                         | 0.20                  |
| 16:06:00                                                                                                                      | 10.0                                             | 110                                       | 8.0                                                                                                                            | 72.11                           | 3                                                                                                         |                                                                  | 11.58                                                         | 0.02                                                | 0.33<br>11 0                                                    | 11.65                          | 16.0                          | 0.20                  |
| 16.06.08                                                                                                                      | 0.02                                             | 96.0                                      |                                                                                                                                | 06/11                           |                                                                                                           |                                                                  | 11.97                                                         | <b>1</b> 10                                         | 00.0                                                            | 11.42                          | 0.86                          | 0.20                  |
| 16:06:15<br>16:06:11                                                                                                          | 0.02                                             | <b>8</b> 0 1                              | 0.02                                                                                                                           | 12,45                           |                                                                                                           |                                                                  | 12.43                                                         | 1.06                                                | 0.00                                                            | 12.42                          | 1.64                          | 00.0                  |
| 16.06:26                                                                                                                      | 0.02                                             | 1.16                                      | 161                                                                                                                            | <b>8</b> 71                     |                                                                                                           |                                                                  | 12.07                                                         | 0.76                                                | 0.0                                                             | 12.89                          | 2.06                          | 000                   |
| 16.06:26                                                                                                                      | 0.02                                             | 1.26                                      | 14                                                                                                                             | 8.1                             |                                                                                                           |                                                                  | 16.0                                                          | 00:1                                                | 8 8                                                             | 96.E1                          | 26.1<br>2.25                  | 0.00                  |
| 16:06:33                                                                                                                      | 0.02                                             | 1.38                                      | 2.87                                                                                                                           | 14.40                           |                                                                                                           |                                                                  | 14.50                                                         | 97                                                  | 0.0                                                             | 1941                           | 2.11                          | 0.00                  |
| 16:06:36                                                                                                                      | 0.02                                             | 1.44                                      | 3.63                                                                                                                           | 15.16                           |                                                                                                           |                                                                  | 14.96                                                         | 0.92                                                | 0.00                                                            | 14.93                          | =                             | 0.0                   |
| 16:06:47                                                                                                                      | 0.03                                             | 9 <u>51</u>                               | 9.15                                                                                                                           | 15.32                           |                                                                                                           |                                                                  | 15.44                                                         | 0.68                                                | 0.00                                                            | 15.39                          | <b>1.1</b>                    | 0.00                  |
| 16:06:31                                                                                                                      | 60.0                                             | 168                                       | 69.4                                                                                                                           | 16.22                           |                                                                                                           |                                                                  | 15.79                                                         | 16.0                                                | 0.0                                                             | 15.88<br>15.20                 | 1.1                           | 0.00                  |
| 16.06:58                                                                                                                      | 0.03                                             | 1.80                                      | £E.2                                                                                                                           | 16.86                           |                                                                                                           |                                                                  | 16.91                                                         | 051                                                 | 0.0                                                             | 45.01<br>E0.71                 | 79.<br>19                     | 00.0                  |
| 16.07.02                                                                                                                      | 0.03                                             | 98 - C                                    |                                                                                                                                | 17.71                           |                                                                                                           |                                                                  | 17.69                                                         | 1.64                                                | 0.00                                                            | 17.65                          | 171                           | 00.0                  |
| 16:07:16                                                                                                                      | 500                                              | 2.04<br>2.10                              | 0.97<br>7.40                                                                                                                   | 18.50                           |                                                                                                           |                                                                  | 18.38                                                         | 121                                                 | 00.00                                                           | 18.30                          | 2.63                          | 0.00                  |
| 16.07.23                                                                                                                      | 100                                              | 2.22                                      | 96 L                                                                                                                           | 14.11<br>07.01                  |                                                                                                           |                                                                  | 18.97<br>10.40                                                | 00.1                                                | 0:00                                                            | 11.94                          | 2.33                          | 00.00                 |
| 16:07:27                                                                                                                      | 0.04                                             | 2.28                                      | 8.52                                                                                                                           | 20.05                           |                                                                                                           |                                                                  | 20.04                                                         | 1.12                                                | 00.0                                                            | 19.51<br>20.02                 | 2.08                          | 0.0                   |
| 16:07:30                                                                                                                      | 90.04                                            | 2.34                                      | 9.05                                                                                                                           | 20.58                           |                                                                                                           |                                                                  | 20.58                                                         | 1.06                                                | 0.00                                                            | 20.05                          | 2.13                          | 000                   |
| 16.07;38                                                                                                                      | <b>10.0</b>                                      | 2.46                                      | 9.58                                                                                                                           | 21.11                           |                                                                                                           |                                                                  | 21.10                                                         | 1.05                                                | 0.00                                                            | 21.07                          | 61                            | 0.0                   |
|                                                                                                                               |                                                  |                                           |                                                                                                                                |                                 |                                                                                                           |                                                                  |                                                               |                                                     |                                                                 |                                |                               |                       |

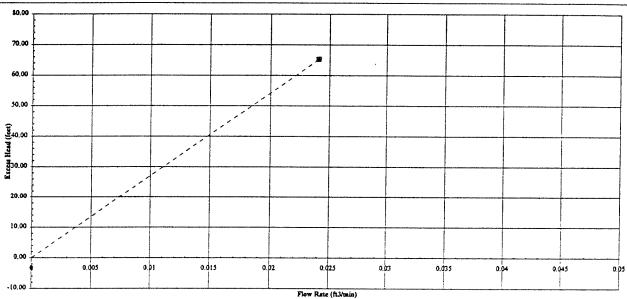
**Golder Associatos** 

211A05 CHA, Input Data

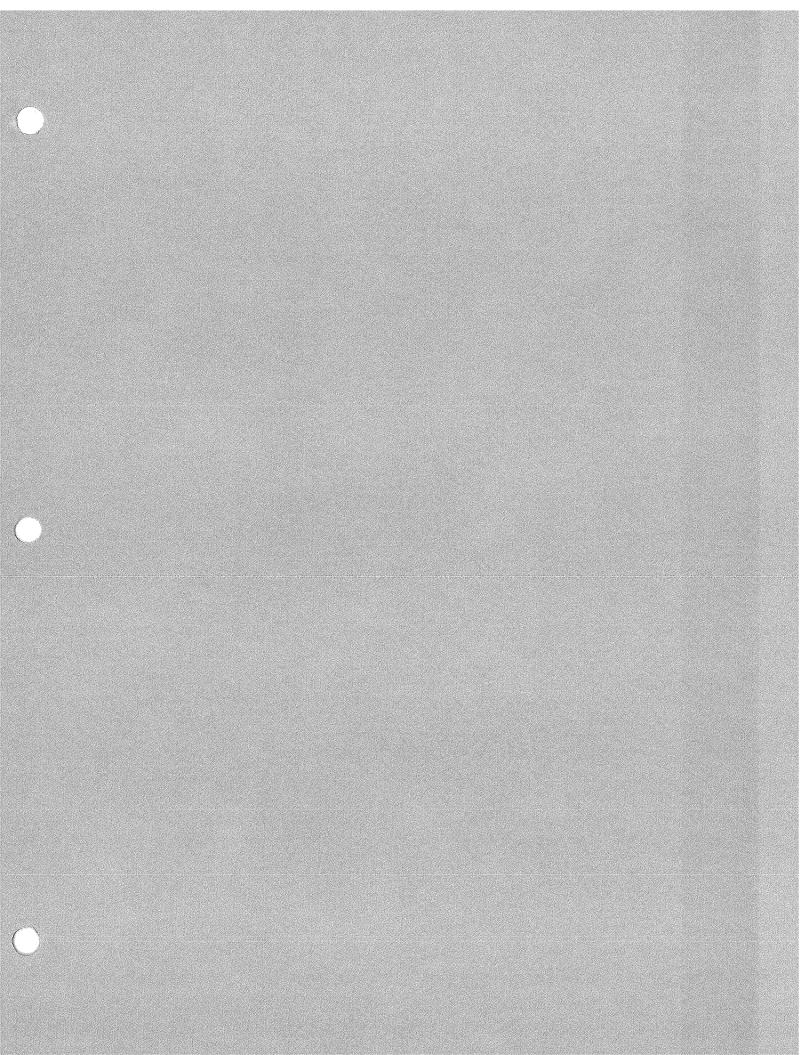
|                 | -             |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 65.24           | 0.1800        |
|                 | <b>u</b> /    |



| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |


Borehole 218A Interval Number 5

#### Plot data

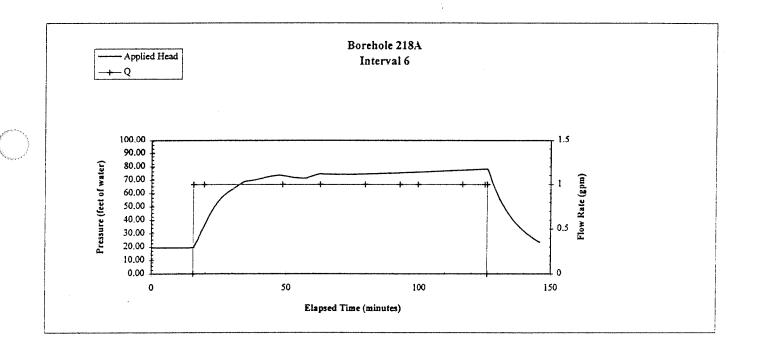

| Applied Head    |
|-----------------|
| (feet of water) |
| 65.24           |

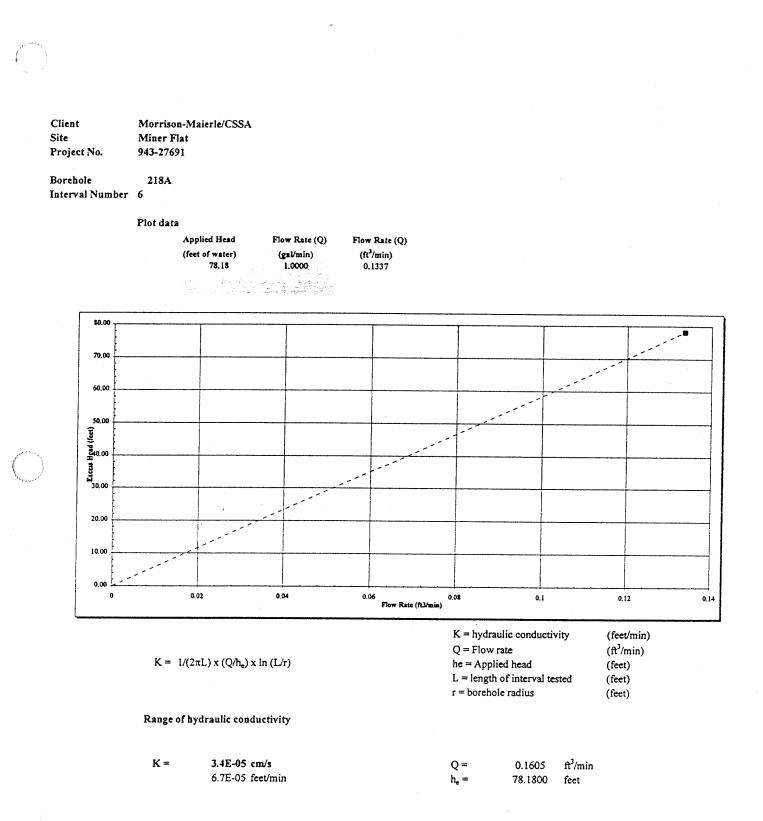
Flow Rate (Q) Flow Rate (Q) (gal/min) 0.1800

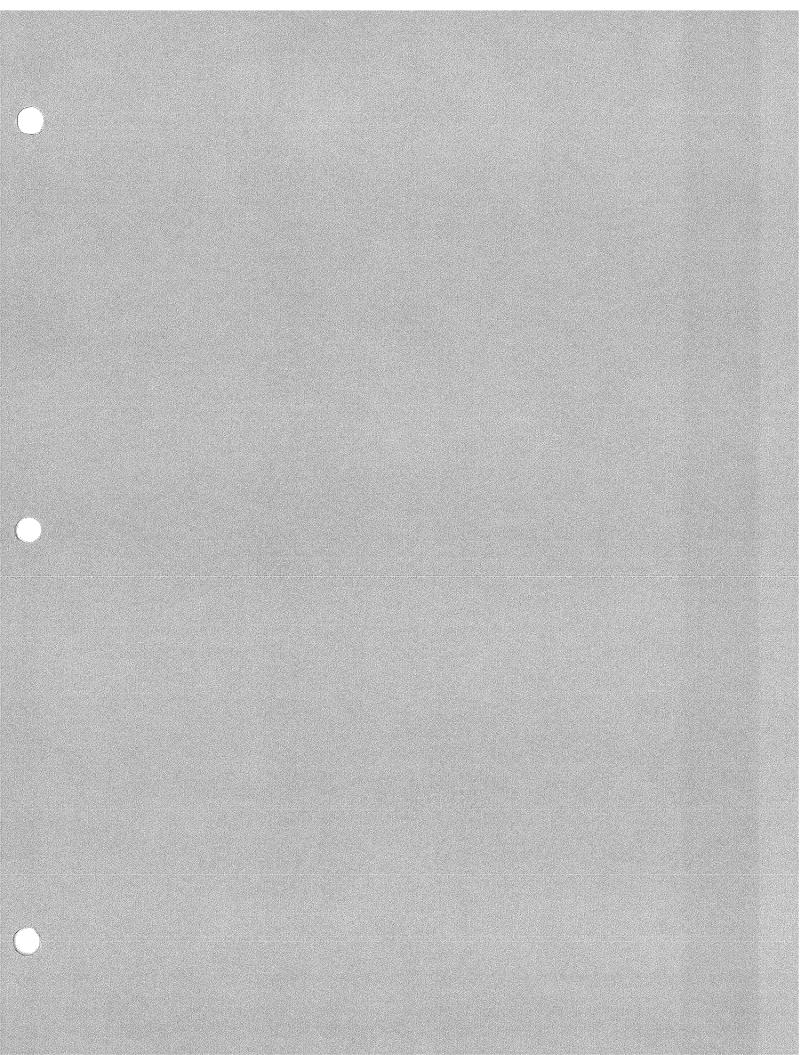
(ft<sup>3</sup>/min) 0.0241



| K = .1/(2  | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow i<br>he = Appli | ed head<br>of interval te |                              | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------|--------------------------|---------------------------|------------------------------|--------------------------------------------------------------------|
| Range of h | ydraulic conductivity                 |                          |                           |                              |                                                                    |
| K =        | 7.3E-06 cm/s<br>1.4E-05 feet/min      | Q =<br>h <sub>e</sub> =  | 0.0289<br>65.2400         | ft <sup>3</sup> /min<br>feet |                                                                    |





| 943-2791,130 |                                                  |                                                                        |                                                                                                                                                                             | 2                                            | Average Q<br>(gal/min)           |                   |                |                | 00.0              | 0.00    | 0.00    | 0.00               | 0.00    | 0.00    | 0.00    | 0.0     | 0.0            | 0:00    | 0.00    | 0.00    | 00.0                 | 00.0   | 00.0  | 0.00   | 0.00    | 0.00     | 0.00         | 0.00           | 0.00           | 00.0    |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-------------------|----------------|----------------|-------------------|---------|---------|--------------------|---------|---------|---------|---------|----------------|---------|---------|---------|----------------------|--------|-------|--------|---------|----------|--------------|----------------|----------------|---------|
|              |                                                  |                                                                        |                                                                                                                                                                             | 5 Point Moving Averages                      | ∆ time /<br>(minutes)            |                   |                | 50             | 80                | 0.00    | 0.00    | 00.0               | 0.00    | 0.00    | 0.0     | 000     | 0.00           | 0.00    | 0.00    | 0.00    | 00.0                 | 8.0    | 8.9   | 10.0   | 0.00    | 0.00     | 0.00         | 00.0           | 00.0           | 10.0    |
|              |                                                  |                                                                        | rval<br>Vertical Deptia (ft)<br>Abvo 199,13<br>Below 209,13                                                                                                                 |                                              | Applied Head<br>(feet of water)  |                   |                | 17 61          | 19.42             | 19.42   | 19.42   | 19.42              | 19.42   | 19.42   | 19.42   | 19.42   | 19.42          | 19.42   | 19.42   | 19.61   | 19.61                | 19.42  | 19.61 | 19.42  | 19.42   | 19.42    | 19.42        | 19.42<br>18.42 | 19,42<br>19,42 | 19.42   |
|              |                                                  |                                                                        | Bottom of interval<br>Hola depth (ft) Bottom of interval<br>Above 200,00 Above<br>Bebow 210,00 Bebow<br>Vertical denth of interval (ft)                                     | Ĵ                                            | Average Q<br>(gal/min)           |                   |                | 00.00<br>00.00 | 0.00              | 00.0    | 000     | 8 0<br>0           | 0.00    | 00.0    | 0.9     | 00.0    | 0.00           | 0.00    | 00.0    | 00.0    | 000                  | 00.0   | 0.00  | 00'0   | 0.00    | 0.00     | 0.00         | 00.0           | 0000           | 000     |
|              |                                                  |                                                                        | Hola depth (ft)<br>Above<br>Bebow<br>Vertical depth of b                                                                                                                    | 3 Point Moving Averages                      | Δ time<br>(mins)                 |                   | :              | 8.8            | 0.00              | 0.00    | 8.8     | 00.0               | 0.00    | 8.8     | 3       | 8.0     | 0.00           | 0.00    | 0.00    | 000     | 0.0                  | 10.0   | 0.01  | -0.01  | 00.0    | 8.0      | 8.0          | 90 00<br>00    | 80             | 00.0    |
|              |                                                  |                                                                        | a:<br>rrval<br>Vertical Depth (ft) H<br>Abovo 169,15<br>Below 179,14                                                                                                        | ) Poit                                       | Applied Head<br>(feet of water)  |                   |                | 14.61          | 19.41             | 19.42   | 19.42   | 19.42              | 19.42   | 19.41   | 19.42   | 19.42   | 19.42          | 19.42   | 19.42   | 19.41   | 19.41                | 19.41  | 19.42 | 19.42  | 19.42   | 19.42    | 29.41        | 19.42          | 19.42          | 19.42   |
|              |                                                  | idie packer<br>bole                                                    | calculation:<br>Top of interval<br>Vertical<br>179.00 Abovo<br>180.00 Below                                                                                                 |                                              | ~ 0                              |                   |                |                |                   |         |         |                    |         |         |         |         |                |         |         |         |                      |        |       |        |         |          |              |                |                | i a     |
| $\bigcirc$   |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation:<br>Top of laterval<br>Hole depth (ft) Top of laterval<br>Above 179,00 Above<br>Edow 180,00 Bolow<br>Vertical depth of top of laterval (ft) |                                              | Q<br>(gal/mia)                   |                   |                |                |                   |         |         |                    |         |         |         |         |                |         |         |         |                      |        |       |        |         |          |              | -              |                |         |
|              |                                                  | 004                                                                    | ~ # * # ~                                                                                                                                                                   |                                              | Applied Head<br>(feet of water)  | 19.41             | 19.41          |                | 19.42             | 19.41   | 19.41   | 19.42<br>10.00     | 19.42   | 19.61   | 19.42   | 19.41   | 19.42<br>19.42 | 14.61   | 19.42   | 19.42   | 19.41                | 19.41  |       | 19.42  | CP 61   | 19.42    | 19.42        | 19.41          | 19.42          | 19.42   |
|              |                                                  |                                                                        | inchea<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                              |                                              | Measured Head<br>(feet of water) | · · <b>č</b> 0.0- | -0.02<br>-0.02 | <b>20.0-</b>   |                   | 20.0-   | 20.02   | -6.02              | -0.02   | 10.0-   | -0.02   | -0.02   | 20.0-          | 0.02    | -0.02   | -0.02   |                      | -0.02  | 80    | 70 07  | 0.0     | -0,02    | 10.0-        | 20.0-          | -0.02          |         |
|              | Ie/CSSA                                          |                                                                        | 3.78<br>0.16<br>177.25<br>202.12<br>24.87<br>170.25<br>170.25                                                                                                               |                                              | Elapsed time<br>(minutes)        | 0.00              | 0.12           | 0.18           | 0.30              | 0.42    | 0.54    | 0.60               | 0.78    | 0.84    | 96.0    | 1.02    | 1.14           | 1.26    | 101     | 141     | 1.36                 | 1.62   | 101   | 1.86   | 16.1    | 2.04     | 2.10         | 2.22           | 2.28           | 2.34    |
|              | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>6<br>1-Nov-95                                                  | Top<br>Builean                                                                                                                                                              | 10.36.9                                      | Elapsed time<br>(hours)          | 90 0              | 000<br>000     | 0.00           | 10.0              | 10.0    | 0.01    | 10'0               | 0.01    | 10.0    | 0.02    | 0.02    | 0.02           | 0.02    | 0.02    | 0.02    | 0.03                 | 00     | 000   | 00     | 0.03    | 0.03     | <b>M</b> 0.0 | M0.0           | 9.0            | 0.0     |
| sevect       | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius<br>Test section location<br>Leagth of test interval<br>Gauge Depth<br>Static Water Level                                               | General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                    | 10.9E.0           | 80'90'6        | 9:36:12        | 1.00.7<br>10-31-9 | 92.96.9 | (C.aC.9 | 9.36.37<br>9.36.44 | 9:36:48 | 12:96.4 | 9.36.59 | 9.37.02 | 11:16:4        | 11.76.9 | 42:26:6 | 12.12.6 | 9.37.35<br>• c.rr. o | 1676.Y | 93745 | 6276.9 | 9:34.00 | EU, 8E.9 | 9:38.07      | 9.38/14        | 9.38.18        | 4798-57 |

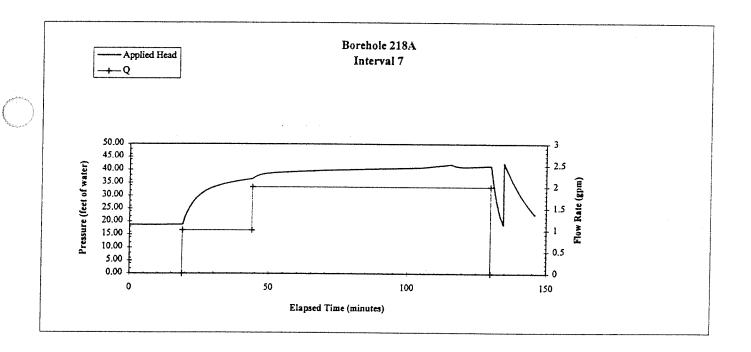

**Golder Associates** 

218A06 CHA, Input Data

|                 | •             |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 78.18           | 1.0000        |





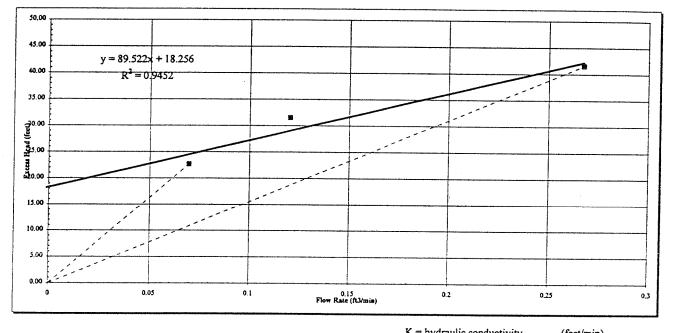



| 061.1672-696 |                                                                                                                                                                                        | 20                                                                    | Average Q<br>(sal/min)           | !                  |                      | 00.0     | 0.00           | 00.0     | 000         | 00.0     | 0.00     | 0.00     | 0.00       | 0.00                 | 00.0     | <b>0</b> 0.0 | 000      | 0.00     | 0.00     | 00.0                                                                                                            | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0:00        | 0.00     | 0.00         | 00.0     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|--------------------|----------------------|----------|----------------|----------|-------------|----------|----------|----------|------------|----------------------|----------|--------------|----------|----------|----------|-----------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-------------|----------|--------------|----------|
| C            |                                                                                                                                                                                        | 25<br>5 Point Moving Averages                                         | ∆ time<br>(minutes)              |                    |                      | 0.00     | 0.00           | 00.0     | 0.0         | 00.0     | 0.00     | 0.00     | 0.00       | 10.0                 | 00.0     | 000          | 0,00     | 0.00     | 0.01     | 0.00                                                                                                            | 0 00     | 0.00     | 10.0-    | 10.0-    | 0.0      | 000         | 10.0     | 10.0         | 10.0     |
|              | rval<br>Vertical Depth (ft)<br>Abve 149.46<br>Bolow 139.55                                                                                                                             | 177.25<br>5 Point J                                                   | Applied Head<br>(feet of water)  |                    |                      | 11.73    | 18.74          | 16 J.1   | E H         | 18.74    | 11.73    | 18.73    | 11.7       | 11.73<br>11.73       |          | 11.72        | 11.73    | 18.74    | 18,74    | 18.74                                                                                                           | 11.74    | K.H      |          | 11.73    |          |             | 18.74    | 18.74        | 18.74    |
|              | Bottom of laterval<br>Vertical<br>130,00 Above<br>160,00 Bolow                                                                                                                         | om of laterval (A)                                                    | verage Q<br>gal/min)             |                    | 00.0                 | 0,00     | 00.0           | 0.00     | 0.00        | 0.00     | 0.00     | 0.00     | 000        | 00.0                 | 0.00     | 0.00         | 0.00     | 0.00     | 0.00     | 0.00                                                                                                            | 000      | 00.0     | 0.00     | 0.00     | 000      | <b>0</b> .0 | 00.0     | <b>20</b> 10 | 0.00     |
|              | Hole depth (f)<br>Abore<br>Bedow                                                                                                                                                       | . Vertical depth of bottom of laterval (f)<br>3 Polat Moving Averages | Δ time A<br>(mins)               |                    | 00.0                 | 0.00     | 0.0            | 0.0      | 0.00        | 0.00     | 0.0      | 00.0     | 10.77      |                      | 0.0      | 0.00         | 0.01     | 00.00    | 0.00     | 0.00                                                                                                            |          |          |          |          | 0.0      | 100         | 10.0     | <b>2</b> 00  | 8.9      |
|              | er<br>Frad<br>Vertical Depth (ft)<br>Above 1199.15 (regeneration<br>Bolow 1199.15 (regeneration)                                                                                       | 3 Point                                                               | Applied Head<br>(feet of water)  |                    | 11.75                | 11.73    | 18.74<br>18.74 | 18.74    | 11.74       | 11.7     | 11.74    |          |            | 11.73                | 18.73    | 11.73        | 11.73    | 18.74    | 18.74    | 11.74                                                                                                           | 18.74    | 11       |          | 11.7     | 11.73    | 12 74       | 19.74    | 11.74        | 11.74    |
|              | addie packer<br>nbolo ::<br>t calculatioa:<br>Top of laterval<br>: 130.00 Above<br>: 160.00 Boow                                                                                       |                                                                       |                                  |                    |                      | ۰.<br>۲. |                |          |             |          |          |          | 0.27<br>34 |                      |          |              |          |          |          |                                                                                                                 |          |          |          |          |          |             |          |              |          |
|              | Test Type:<br>Coastaat head, Straddle packer<br>Gauge located dowahole<br>True vertical depth calculation:<br>True vertical depth calculation:<br>V Above (1)<br>Above (1)<br>Below    |                                                                       | Q<br>(gal/min)                   |                    |                      |          |                |          |             |          |          |          |            |                      |          |              |          |          |          | A Patro La Contra Co |          |          |          |          |          |             |          |              |          |
|              |                                                                                                                                                                                        |                                                                       | Applied Head<br>(feet of water)  | 11.73<br>11.73     | 11.73                |          | 11.11          | 18.74    | 18.74       |          | 11.74    | 11.73    | 11.73      | 11.73                | H.73     |              |          |          | 11.72    | 16.74                                                                                                           |          |          |          | 11.73    |          | 11.74       | 11.74    | 18.74        | 11.74    |
|              | inches<br>feet<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                                             |                                                                       | Mcasured Head<br>(feet of water) | <b>0</b> .00       |                      |          | 000            | 0000     | 80          | 000      |          |          | 0.00       | 000                  | 0.00     |              |          |          | 000      |                                                                                                                 | 0.00     | 0000     | 0.00     | 0.0      |          | 0.00        | 0.00     | 0.00         | 0.00     |
|              | , N - N - N                                                                                                                                                                            |                                                                       | Elapsed time<br>(minutes)        | 000<br>900         | 0.12                 | 0.24     | 0.36           | 0.42     | 6.9<br>08/0 | 0.72     | 0.78     | 0.64     | 96.0       | 1.02                 |          | 07-1         |          | 14       | 1.56     | 1 62                                                                                                            | 1.68     | 1.80     | 1.86     | 36.1     | 2.0      | 2.10        | 2.28     | 104          | 2.40     |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>218A<br>7<br>1-Nov-95<br>3-78<br>3-78<br>0-16<br>0-16<br>1925<br>Bettam<br>11724<br>1462<br>1462                                   | 12:10.31                                                              | Elapsed time<br>(hours)          | 000                | 0.00                 | 00.00    | 0.01           | 10:0     | 10.0        | 10.0     | 0.01     | 10'0     | 0.02       | 0.02                 | 70:0     | 70.0<br>100  | 0.02     | 0.02     | 0.03     | 0.03                                                                                                            | 0.03     | 0.01     | 0.03     | 0.03     | 0.0      | 100         | 0.04     | 10.0         | 10:0     |
| 1/30%        | Client<br>Site<br>Project No.<br>Borehole<br>Test Number<br>Test Date<br>Borehole diameter<br>Borehole radiua<br>Test section location<br>Length of test laterval<br>State Water Level | General Lithology<br>Sandstone<br>Start Time                          | Clock<br>Time                    | 1641 21<br>2641:51 | 12:18.38<br>12:18:42 | 12:18:45 | 12:11:53       | 0C 91 71 | 12.19.07    | 12:19:14 | 12:19:18 | 12.19.21 | 12:19:29   | 12.19.32<br>ar ai cl | 11-10-12 | 12, 19, 47   | 12:19:34 | 12:19:57 | 12.20.05 | 12.20.08                                                                                                        | 12.20.12 | 61:07:71 | 12.00.21 | 12:20:30 | CC.07.71 | 15.02.21    | 12:20:48 | 12.20.51     | 12.20.35 |

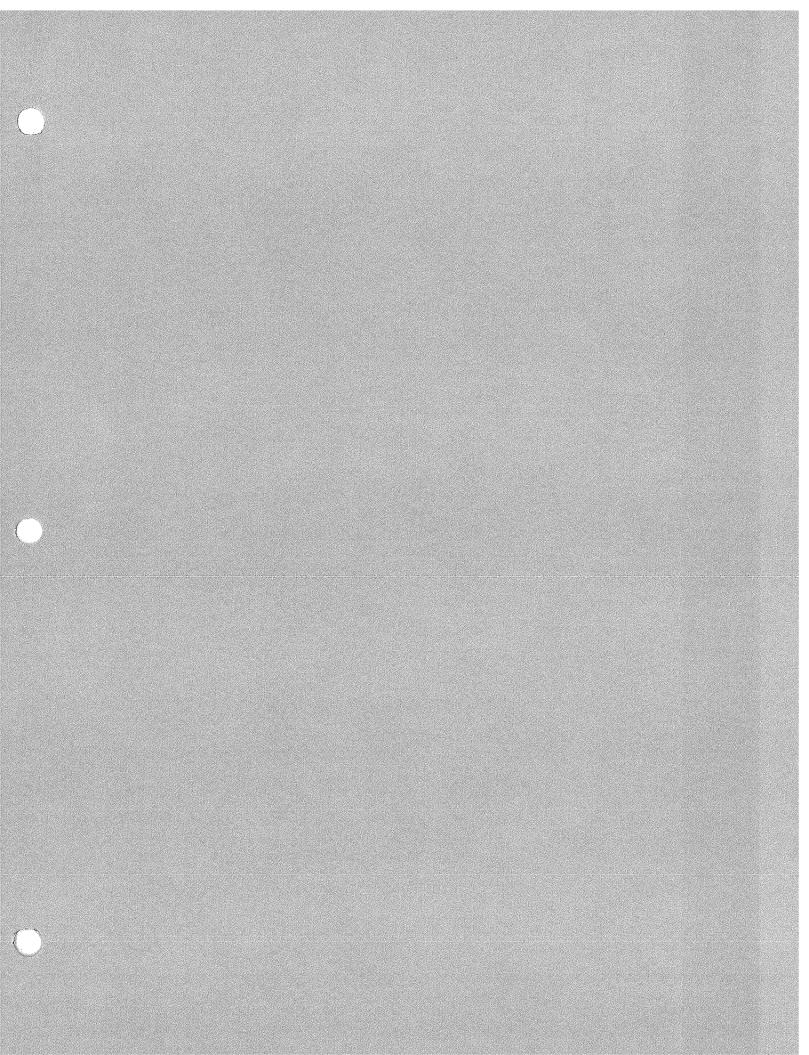
Goldar Associatos

214A07.CHA, Input Date

|                 | •             |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 41.56           | 2.0000        |
| 31.49           | 0.9000        |
| 22.65           | 0.5200        |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

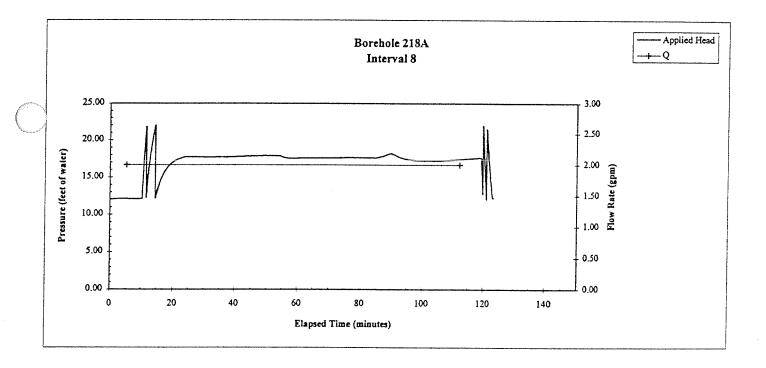

Borehole 218A Interval Number 7

### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 41.56           | 2.0000        | 0.2674                 |
| 31.49           | 0.9000        | 0,1203                 |
| 22.65           | 0.5200        | 0.0695                 |



| K = 1/   | (2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow<br>he = App    | lied head<br>h of interval te |                              | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|----------------------------------------|-------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------|
| Range of | bydraulic conductivity                 |                         |                               |                              |                                                                    |
| K =      | 1.3E-04 cm/s<br>2.5E-04 feet/min       | Q =<br>h <sub>e</sub> = | 0.3211<br>41.5620             | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 6.1E-05 cm/s<br>1.2E-04 feet/min       | Q =<br>h <sub>e</sub> = | 0.0835<br>22.6500             | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 1.80E-04 cm/s<br>3.56E-04 feet/min     | Trendline Slope         | 89.522                        | 2                            |                                                                    |

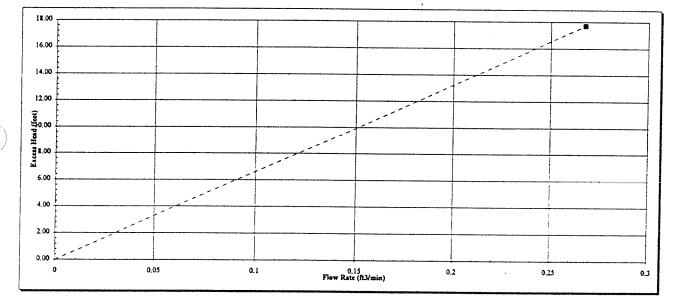



|                                       |                                                  |                                                                                          |                                 | $\supset$                                                              |                                                        |                                                  |                                                       |              |                         | 943-2791.130 |
|---------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------|-------------------------|--------------|
| Morrison-Mi<br>Miner Flat<br>43-27691 | Morrison-Maierle/CSSA<br>Miner Plat<br>943-27691 |                                                                                          |                                 |                                                                        |                                                        |                                                  |                                                       |              |                         |              |
| 218A<br>8<br>1-Nov-95                 |                                                  |                                                                                          |                                 | Test Type:<br>Constant head, Straddle packer<br>Gauge located dowuhole |                                                        |                                                  |                                                       |              |                         |              |
| Tep                                   | 3.78<br>0.16<br>127.60                           | inches<br>feet<br>feet below top of casing                                               |                                 | True vertical depth calculation:<br>Top of interval<br>Hole denth (h)  |                                                        | True vertical depth calculation:<br>Bottom of it | ş                                                     | _            |                         |              |
| Bollom                                | 152.47<br>24.87<br>128.00<br>204.44              | feet below top of casing<br>feet<br>feet below top of casing<br>feet below top of casing |                                 | 120.00<br>130.00<br>of ten of interv                                   | Above 119.49<br>Above 119.49<br>Below 129.46<br>177.44 | Rioue depth (II)<br>Above<br>Bolow               | Ver<br>150.00 Ab                                      | cul Dep      |                         |              |
|                                       |                                                  |                                                                                          |                                 |                                                                        |                                                        |                                                  | <del>v a ucai ac</del> pta of bollom of laterval (II) | EE 251 (1    |                         |              |
| 14:53:47                              |                                                  |                                                                                          |                                 |                                                                        | 3 Poir                                                 | 3 Point Moving Averages                          | 1gcs                                                  | 5 Point      | 5 Point Moving Averages | ងខ្លួន       |
| Elapsed time<br>(hours)               | e Elapsed time<br>(minutes)                      | e Mcasured Head<br>(feet of water)                                                       | Applied Head<br>(feet of water) | Q<br>(gal/min)                                                         | Applied Head<br>(feet of water)                        | Δ time<br>(mins)                                 | Average Q<br>(val/min)                                | Applied Head | Δ time                  | Average Q    |
| 00.0                                  | 0.00                                             | 0.02                                                                                     | 12.05                           |                                                                        |                                                        | Ì                                                | (mm m.9)                                              |              |                         | (gaumin)     |
| 0.0                                   | 0.06<br>0.17                                     | 10:0                                                                                     |                                 |                                                                        |                                                        |                                                  |                                                       |              |                         |              |
| 0.00                                  | 0.11                                             | 10:0                                                                                     | 12.05                           |                                                                        | 12.05                                                  | 0.00                                             | 0.0                                                   |              |                         |              |
| 10'0                                  | 0:30                                             | 10.0                                                                                     |                                 |                                                                        | 12.05                                                  | 800                                              | 0.00                                                  | 12.05        | 0.00                    | 0.00         |
| 10.0                                  | 0.36                                             | 10:0                                                                                     |                                 |                                                                        | 12.05                                                  | 0.0                                              | 0.0                                                   | 12.03        | 00 00<br>00             | 0.0          |
| 10.0                                  | 0.54                                             | 10.0                                                                                     | 12.05                           |                                                                        | 12.05                                                  | 0.00                                             | 00.00                                                 | 12.05        | 10.0                    | 8 8          |
| 10.0                                  | 0.60                                             | 0.02                                                                                     |                                 |                                                                        | 12.05                                                  | 0.0                                              | 0000                                                  | 12.05        | 00.0                    | 0.00         |
| 10:0                                  | 0.7                                              | 10.0                                                                                     |                                 |                                                                        | 12.05                                                  | 0.00                                             | 000                                                   | 50 CI        | 90 i 0                  | 0.0          |
| 10.0                                  | 110                                              | 0.02                                                                                     |                                 |                                                                        | 12.05                                                  | 0.00                                             | 00.0                                                  | 12.05        | 1010                    | 0.0          |
| 0.02                                  | 96.0                                             | 0.02                                                                                     | 5071<br>70 Cl                   |                                                                        | 12.05                                                  | 0.01                                             | 00'0                                                  | 12.05        | 0.01                    | 00.0         |
| 0.02                                  | 1.02                                             | 0.03                                                                                     |                                 |                                                                        | 12.06                                                  | 0.0                                              | 0.00                                                  | 12.06        | 10.0                    | 0.00         |
| 0.02                                  | 1                                                | 0.03                                                                                     |                                 |                                                                        | 12.06                                                  | 0.0                                              | 8.0                                                   | 90.21        | 10.0                    | 0.0          |
| 70'0                                  | 07 7                                             | 0.03                                                                                     |                                 |                                                                        | 12.06                                                  | 0.0                                              | 00.0                                                  | 12.07        | 10.0                    | 8 8          |
| 0.02                                  |                                                  |                                                                                          |                                 |                                                                        | 12.07                                                  | 0.01                                             | 0.00                                                  | 12.07        | 10.0                    | 8 0          |
| 0.02                                  | Ŧ                                                | 5                                                                                        | 10.21                           |                                                                        | 12.07                                                  | 0.01                                             | 00.00                                                 | 12.07        | 0.02                    | 00.0         |
| 0.03                                  | 1.56                                             | 0.03                                                                                     |                                 |                                                                        | 1071                                                   | 10.0                                             | 0.00                                                  | 12.08        | 0.02                    | 00.0         |
| 60.03                                 | 1.62                                             | 0.05                                                                                     |                                 |                                                                        | 12.04                                                  |                                                  | 0.00                                                  | 12.08        | 0.01                    | 0.00         |
| 0.03                                  | 1,61                                             | 0.05                                                                                     |                                 |                                                                        | 12.09                                                  | 10.0                                             | 8.9                                                   | 10.21        | 100                     | 000          |
| 50.0                                  | 1.1                                              | 0.06                                                                                     |                                 |                                                                        | 12.09                                                  | 0.01                                             | 00.0                                                  |              | 10.0                    | 00.0         |
| נטיט                                  | 1.16                                             | 0.06                                                                                     |                                 |                                                                        | 12.09                                                  | 0.0                                              | 80                                                    | 12.09        | 10.0                    | 8.8          |
| 50'D                                  | 161                                              | 0.06                                                                                     |                                 |                                                                        | 12.09                                                  | 90.0                                             | 80                                                    | 12.09        | 100                     | 8.8          |
| 200                                   | 907                                              | 0.06                                                                                     |                                 |                                                                        | 12.09                                                  | 0.0                                              | 0.00                                                  | 12.09        |                         | 8.8          |
|                                       | 9177                                             | 0.06                                                                                     |                                 |                                                                        | 12.09                                                  | 0.0                                              | 00.0                                                  | 12.08        | 8.0                     | 8.0          |
| 5.0                                   |                                                  | 0.06                                                                                     |                                 |                                                                        | 12.09                                                  | 0.00                                             | 00.00                                                 | 12.10        | 10.0                    | 00.0         |
| 500                                   | 177<br>177                                       | 0.06                                                                                     | 12.09                           |                                                                        | 12.10                                                  | 10:0                                             | 0.00                                                  | 12.10        | 000                     | 8.0          |
|                                       | 5.4                                              | 0.07                                                                                     | 12.10                           |                                                                        |                                                        |                                                  |                                                       |              | 12.2                    | 3            |

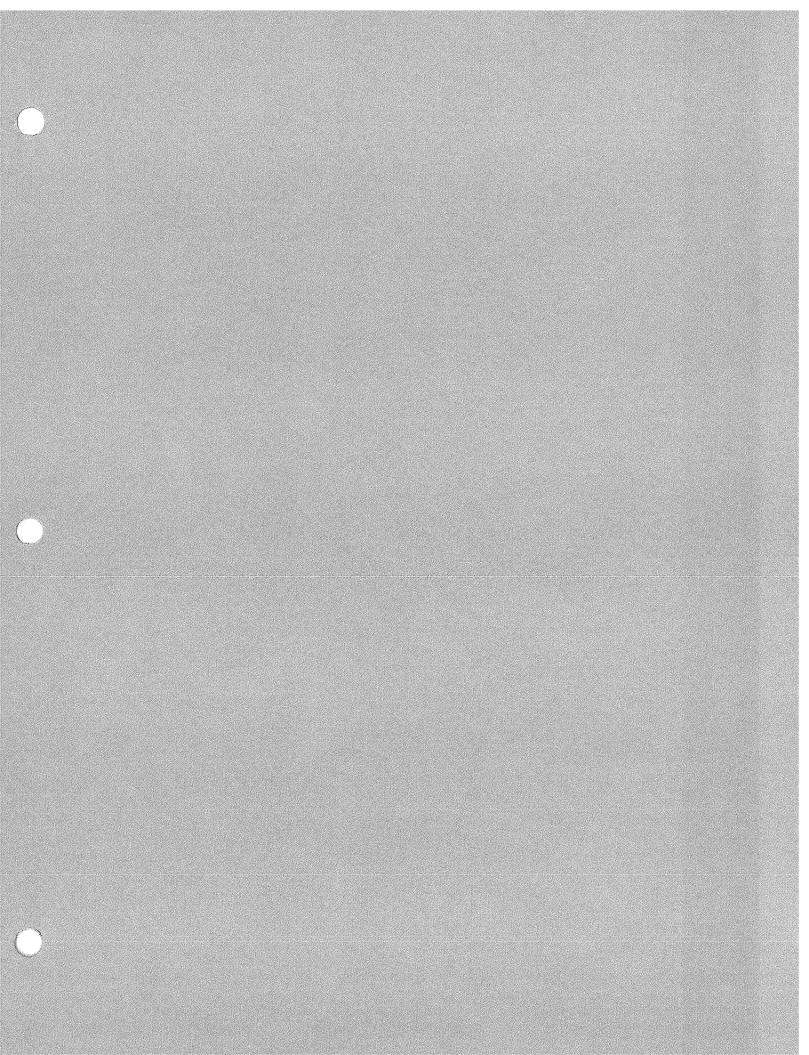
**Golder Associates** 

215A05A.CHA, Input Data

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 17.70           | 2.000         |




Client Morrison-Maierle/CSSA Site **Miner Flat** Project No. 943-27691 Borehole 218A

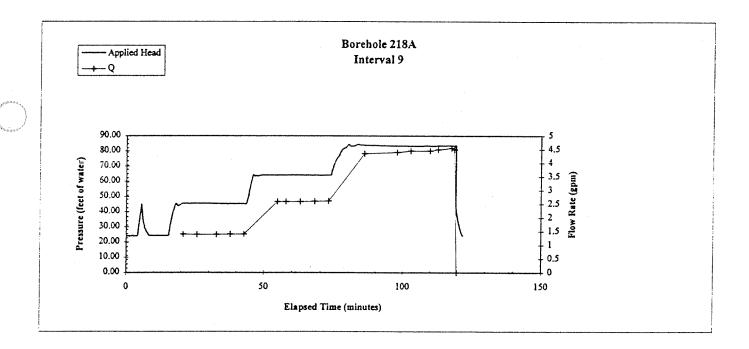

Interval Number 8

## Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 17.70           | 2.000         | 0.2674                 |
|                 |               |                        |



| K = 1/(  | (2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                 |                                                                                                                          |                                                                    |
| K =      | 2.5E-04 cm/s                           | $Q = 0.267 \text{ ft}^3/\text{min}$                                                                                      |                                                                    |
|          | 4.9E-04 feet/min                       | $h_{r} = 17.70$ feet                                                                                                     |                                                                    |

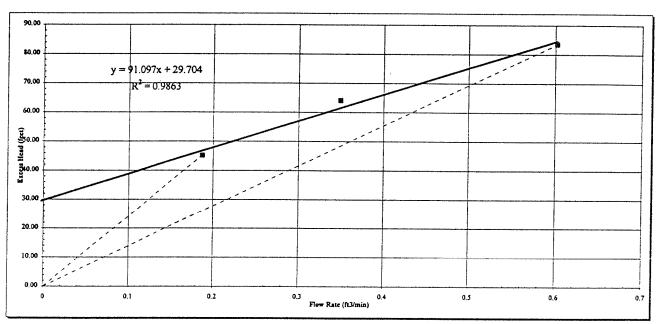



| 0EL 1672-EH4 |                                                  |                                                                          |                                                                                                                                      |                                              | agea<br>Average Q                | (gal/min)                               |          |              | 00.00          | 0.00                 | 000      | 0.00           | 0.00     | 8.9            | 000          | 0.00     | 0.00         | 00.0         | 000      | 00.0     | 0.00     | 0.00     | 0.00        | 00.0     | 000      | 0.00     | 00.0       | 0.00     | 0.00     | 00.0           |
|--------------|--------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------|----------|--------------|----------------|----------------------|----------|----------------|----------|----------------|--------------|----------|--------------|--------------|----------|----------|----------|----------|-------------|----------|----------|----------|------------|----------|----------|----------------|
|              |                                                  |                                                                          |                                                                                                                                      |                                              | ,er                              | (minutes)                               |          |              | 0.00           | 0.00                 | 90 G     | 9.0<br>9.0     | 0.04     | 0.05<br>0.05   | 0.07         | 0.00     | -0.02        | Ca.17        | 0.03     | 0.01     | 0.64     | 0.01     | 10.0-       | 10.0     | 10.0-    | 0.0      | 10.0-      | -0.01    | 10.0-    | 00'0           |
|              |                                                  |                                                                          | cal Dep                                                                                                                              | 127,                                         | 5 Point 1<br>Applied Head        | (feet of water)                         |          |              | 24.06          | 24.06                | 24.06    | 24.06          | 24.07    | 24.07<br>24.09 | 24.10        | 24.11    | 24.11        | 10 EL        | 16,02    | 16,02    | 66,02    | 24.12    | 24.12       | 1.12     | 24.11    | 24.11    | 24.11      | 24.11    | 24.10    | 24.10<br>24.10 |
|              |                                                  |                                                                          | Bottom of interval<br>Ver<br>120.00 Abo<br>130.00 Bok                                                                                | Vertical depta of bollom of laterval (f),    | ges<br>Average Q                 | (gal/min)                               |          | 0.00         | 0,00           | 000                  | 000      | 0.00           | 00.0     | 0.0            | 00.0         | 0.00     | 00.0         | 0.00         | 0.00     | 0.00     | 00.0     | 0.00     | 0.0         | 800      | 0.00     | 00.00    | 0.00       | 00.00    | 0.00     | 0.0            |
|              |                                                  |                                                                          | Hole depth (f)<br>Above<br>Below                                                                                                     | Verucal depth of bollo<br>3 Doint Moning A   | A time                           | (10100)                                 |          | 0.0          | 0.00           | 8 0<br>0             | 0.0      | 0.00           | 0.00     | 0.05           | 0.03         | 0.02     | 3 2          | -0.62        | 0.02     | 0.65     | 10:0-    |          | 70'D        | 10'0     | 0.00     | 0.00     | 0.00       | -0.01    | 0.0      | 00.0-          |
|              |                                                  |                                                                          | i:<br>srval<br>Vertical Depth (ft) Hd<br>Above 99.91<br>Below 109.9<br>Adrin 109.9                                                   |                                              | Applied Head                     | ICCI NI MAICE)                          |          | 24.06        | 24.06          | 24.06                | 24.06    | 24.06          | 24.06    | 24.09          | 24.11        | 24.12    | 24.10        | 13.01        | 23.89    | 06.62    | 1.62     | 1.12     | 24.12       | 24.12    | 24.11    | 24.11    | 24.11      | 24.11    | 24.10    | 24.10          |
|              |                                                  | ldle packer<br>aole                                                      | calculation:<br>Top of laterval<br>Vertical<br>10.00 Above<br>110.00 Below                                                           |                                              | ~ :                              | -                                       |          | 44.          |                |                      |          |                |          | • .            |              |          |              |              |          |          |          |          |             |          |          |          |            |          |          |                |
| ()           |                                                  | Test Type:<br>Coustant keed, Straddle packer<br>Gauge located downhole . | True vertical depth calculation:<br>Top of laterval<br>Hule depth (ft) Top 0 of laterval<br>Above 110.00 Above<br>Below 110.00 Below |                                              | Q<br>(osl/min)                   | (11111111111111111111111111111111111111 |          |              |                |                      |          |                |          |                |              |          |              |              |          |          |          |          |             |          |          |          |            |          |          |                |
|              |                                                  | ĔŬŎ                                                                      | Т. Н.<br>А.<br>В.                                                                                                                    |                                              | Applied Head<br>(feet of water)  |                                         | 24.06    | 24.06        | 24.06<br>24.06 | 24.06                | 24.06    | 24.06<br>24.06 | 24.06    | 24.09          | 24.11        | 24.13    | 24.09        | 24.09        | 17:02    | 24 []    | 24.10    | 24.12    | 21.12       | 24.11    | 112      | 24.11    | 14.11      | 11.12    | 24.10    | 24.10          |
|              |                                                  |                                                                          | linchea<br>fea<br>feat below top of caaing<br>feat below top of caaing<br>feat below top of caaing<br>feat below top of caaing       |                                              | Mcasured Head<br>(fect of water) | 990                                     | 88       | 0.0          | 0.00           | 0.00                 | 800      | 0.00           | 0.00     | 0.0            | 2010<br>2010 |          | C (0)        | 0.03         | 4C.U-    | 0.07     | 0.04     | 0.06     | 0.06        | 0.05     | 0.05     | 500      | 004<br>100 | 100      | 0.04     | 90.0           |
|              | ie/CSSA                                          |                                                                          | 3.78<br>0.16<br>0.16<br>102.41<br>127.77<br>25.36<br>91.03<br>6.28                                                                   |                                              | Elapsed time<br>(minutes)        | 0.0                                     | 0.06     | 0.12<br>0.18 | 0.30           | 0.36                 | 0.42     | 09.0           | 0.72     | 12 O           | 96.0         | 1.01     | 1.14         | 1.20         |          | 1.4      | 1.56     | 1.62     | 1.68        | 01.1     |          | 2.04     | 5.10       | 111      | 2.28     | 2.34           |
|              | Morrison-Maierle/CSSA<br>Miaer Flat<br>943-27691 | 218A<br>9 (r)<br>18-Nov-95                                               | Top<br>Bottem                                                                                                                        | 10:52.15                                     | Elapsed time<br>(hours)          | 0.00                                    | 0.00     | 00.0<br>00.0 | 10.0           | 10.0                 | 100      | 10.0           | 10.0     | 10.0           | 0.02         | 0.02     | <b>0</b> .02 | 20.0<br>0 03 | 0.02     | 0.02     | 0.03     | 0.03     | <u>60.0</u> | 10.0     | (0))     | 0.0      | 0.04       | 0.04     | 0.04     | 10.0           |
| 7394         | Client<br>Site<br>Project No.                    | Borehole<br>Test Number<br>Test Date                                     | Borehole diameter<br>Borehole radius<br>Tat section location<br>Length of tat laterval<br>Gauge Depth<br>Static Water Level          | General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                    | 10:52:15                                | 10.52:19 | 10.52.26     | EE:55:01       | 10:52:37<br>10:52:40 | 10:52:47 | 10.52.51       | 10.52:58 | 10.53.02       | EL.53.13     | 10:33:20 | 10.53.23     | 16.65.01     | 10.53.38 | 10:33:41 | 10:53:49 | 10.53.52 | 10:53:56    | 10.54.01 | 10.34.14 | 10:54:17 | 10:34:21   | 30:54:28 | 10:54:32 | 30.54.35       |

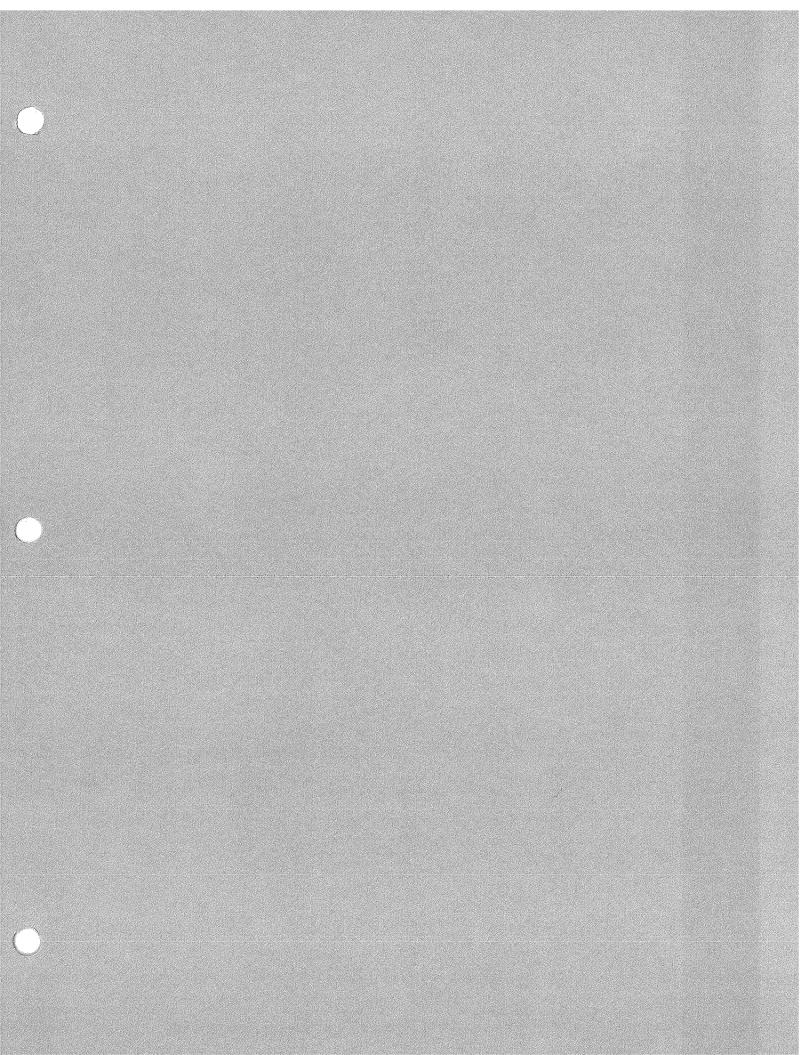
Golder Associates

218A09.CHA, Input Data

| Applied Head    | Flow Rate (Q)    |
|-----------------|------------------|
| (feet of water) | (gal/min)        |
| 45.19           | 1.4000           |
| 64.06<br>83.51  | 2.6100<br>4.5000 |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |


| Borehole        | 218A  |
|-----------------|-------|
| Interval Number | 9 (r) |

# Plot data

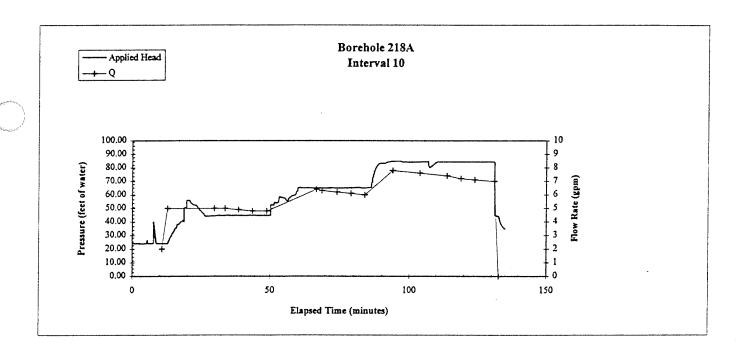
| Applied Head    | Flow Rate (Q) | Flow Rate (Q           |  |  |  |  |  |  |  |  |
|-----------------|---------------|------------------------|--|--|--|--|--|--|--|--|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |  |  |  |  |  |  |  |  |
| 45.19           | 1.4000        | 0.1872                 |  |  |  |  |  |  |  |  |
| 64.06           | 2.6100        | 0.3490                 |  |  |  |  |  |  |  |  |
| 83.51           | 4.5000        | 0.6017                 |  |  |  |  |  |  |  |  |



| K = 1/   | (2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flor<br>he = Ap<br>L = leng | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |                              |  |  |  |  |  |  |
|----------|----------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Range of | hydraulic conductivity                 |                                 |                                                                                                                          |                              |  |  |  |  |  |  |
| K =      | 8.0E-05 cm/s<br>1.6E-04 feet/min       | Q =<br>h <sub>e</sub> =         | 0.2248<br>45.1900                                                                                                        | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =      | 1.4E-04 cm/s<br>2.8E-04 feet/min       | Q =<br>h <sub>e</sub> =         | 0.7225<br>83.5100                                                                                                        | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =      | 1.77E-04 cm/s<br>3.50E-04 feet/min     | Trendline Slope                 | 91.09                                                                                                                    | 7                            |  |  |  |  |  |  |



| 0[] 16(2-616 |                                                  |                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | rages                          | Average Q<br>(val/min)           |                      |                |              | 800      | 0 00     | 00.0<br>00.0 | 00.0     | 000                  | 000      | 0 00     | 0.00     | 00.0         | 00.0     | 0.00     | 0.00        | 000      | 0.00     | 0.00     | 0.00                 | 00.0     | 00.0        | 0.0      | 0.00             | 0.00                   |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------|----------------|--------------|----------|----------|--------------|----------|----------------------|----------|----------|----------|--------------|----------|----------|-------------|----------|----------|----------|----------------------|----------|-------------|----------|------------------|------------------------|
|              |                                                  |                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 5 Point Moving Averages        | ∆ time<br>(minutes)              |                      |                | 0.00         | 0.00     | 0.00     | 000          | 0.00     | 0.00                 | 000      | 0.00     | 0.00     | 0.00         | 00.00    | 0.00     | 00.0        | 00:0     | 0.01     | 10.0     | 000                  | 10.0     | 800         | 10.0-    | 10.0-            | <b>(</b> 0) <b>0</b> - |
|              |                                                  |                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C#701                          | 5 Point                        | Applied Head<br>(feet of water)  |                      |                | 24.09        | 24.09    | 24.09    | 24.09        | 24.09    | 24.09                | 24.09    | 24.09    | 24.09    | 24.09        | 24.09    | 24.09    | 24.09       | 24.09    | 24.10    | 24.10    | 24.10                | 24.10    | 24.10       | 24.09    | 24.09            | 24.09                  |
|              |                                                  |                                                                        | Bottom of laterval                                            | Above 110,00 Above 200,00 Above 100,00 Above 100,00 Above 200,00 Above 200,000 Above 200,00 Abov |                                | Ũ                              | Average Q<br>(gal/min)           |                      |                | 0.0          | 0.00     | 00.0     | 90.0         | 00.0     | 00 0<br>00 0         | 0.00     | 0.00     | 00.0     | 800          | 0.00     | 00.00    | 00.0        | 0.00     | 00.00    | 00.0     | 00.0                 | 0.00     | 0.00        | 0.00     | 00.0             | <b>0</b> .0            |
|              |                                                  |                                                                        | (a)<br>Ameta (a)                                              | Above<br>Above<br>Bolow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | <b>3 Point Moving Averages</b> | ∆ time<br>(mins)                 |                      | 20             | 0.0          | 0.00     | 80.00    | 0.0          | 0.0      | 8<br>8<br>8<br>8     | 0.00     | 0.00     | 8        | 00'0         | 0.00     | 8.8      | 000         | 0.00     | 10.0     | 0.00     | 1019                 | 00.0     | 0.01        | 0.00     | 10 G<br>10 G     | *n:h-                  |
|              |                                                  |                                                                        | a:<br>srval<br>Vartical Dente (A) - F                         | 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 3 Point                        | Applied Head<br>(feet of water)  |                      | 24.00          | 24.09        | 24.09    | 6 6 72   | 24.09        | 21.09    | 6 6 Z                | 24.09    | 24.09    | 24 09    | 24.09        | 24.09    | 24.09    | 24.09       | 24.09    | 24.10    | 24.10    | 24.10                | 24.09    | 24.10       | 24.10    | 24.09<br>24.09   |                        |
| ()           |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located dowshole |                                                               | 70,00<br>80,00<br>6 top of latery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                | Q<br>(gal/min)                   |                      |                |              |          |          |              |          |                      |          |          |          |              |          |          |             |          |          |          |                      |          |             |          |                  |                        |
|              |                                                  | Test Type:<br>Constant h<br>Gauge loca                                 | True vertical d<br>Hole depth (A)                             | Above<br>Below<br>Vertical de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                |                                  |                      |                |              |          | -        |              |          |                      |          |          |          |              |          |          |             |          |          |          |                      |          |             |          |                  | - 1977<br>             |
|              |                                                  |                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                | Applied Ilead<br>(feet of water) | 24.09                | 24.09<br>24.08 | 24.09        | 24.09    | 24.09    | 24.09        | 24.09    | 24.09                | 24.09    | 24.09    | 24.09    | 24.09        | 24.09    | 24.09    | 24.09       | 24.09    | 24.10    | 24.10    | 24.10                | 24.09    | 24.10       | 24.10    | 24.08            |                        |
|              |                                                  |                                                                        | inchea<br>feet<br>feet below top of casing                    | feet below top of casing<br>feet<br>feet below top of casing<br>feet below top of casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                | Measured Head<br>(feet of water) | 0.03                 | 0.03           | <b>10.0</b>  | 60<br>0  | 0.03     | 0.0          | 0.03     | 0.03                 | 0.0      |          |          | 00           | 30       |          |             | 0.03     |          | 3        | 19                   | 0.03     | 80          | 500      | 0.02             |                        |
|              | rle/CSSA                                         |                                                                        |                                                               | 102,94 6<br>25.36 6<br>66.20 6<br>206.28 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                | Elapsed time<br>(minutes)        | 000                  | 0.12           | 0.18<br>0.10 | 0.06     | 0.42     | 0.54         | 96.0     | 1.02                 |          | H        | 1.14     | 1.20         | 15       | 1.44     | 1.56        | 161      | 01.1     | 1.16     | <b>1</b> 94          | 2.04     | 272         | 17       | 2.34             |                        |
|              | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>10 retest<br>18-Nov-95                                         | Top                                                           | Beccen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | 13:16:13                       | Elapsed time<br>(hours)          | 000                  | 000            | 0.00         | 10.0     | 10.0     | 10.0         | 0.02     | 0.02                 | 0.02     | 0.02     | 0.02     | 0.07<br>0.02 | 0.02     | 0.02     | 0.0<br>20 0 | 0.0      | 0.03     | 0.03     |                      | 0.0      | <b>1</b> 00 | 0.04     | <del>1</del> 0:0 |                        |
| 10006        | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius<br>Test section location | Length of test laterval<br>Gauge Depth<br>Static Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General Lithology<br>Sandstone | Start Time                     | Clock<br>Time                    | 13:16:13<br>13:16:17 | 13:16:20       | 13:16:24     | 13:16:35 | 13:16:38 | 61:91:01     | 13:17.11 | 13:17:14<br>11:17-18 | 13:17:14 | 13:17:21 | 13:17:21 | 11/29        | 90:71:01 | 6E.71.EI | 13.17.47    | 13.17.54 | 10:31:61 | 13.11.05 | 13:18:12<br>13:14:14 | 61-81-81 | 13.11.26    | 13.14.30 | 13:11:33         |                        |

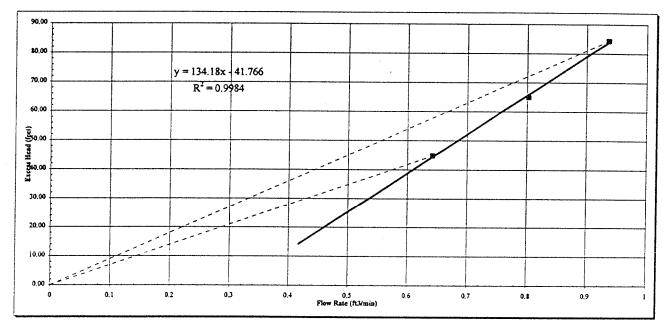

Golder Associatos

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)

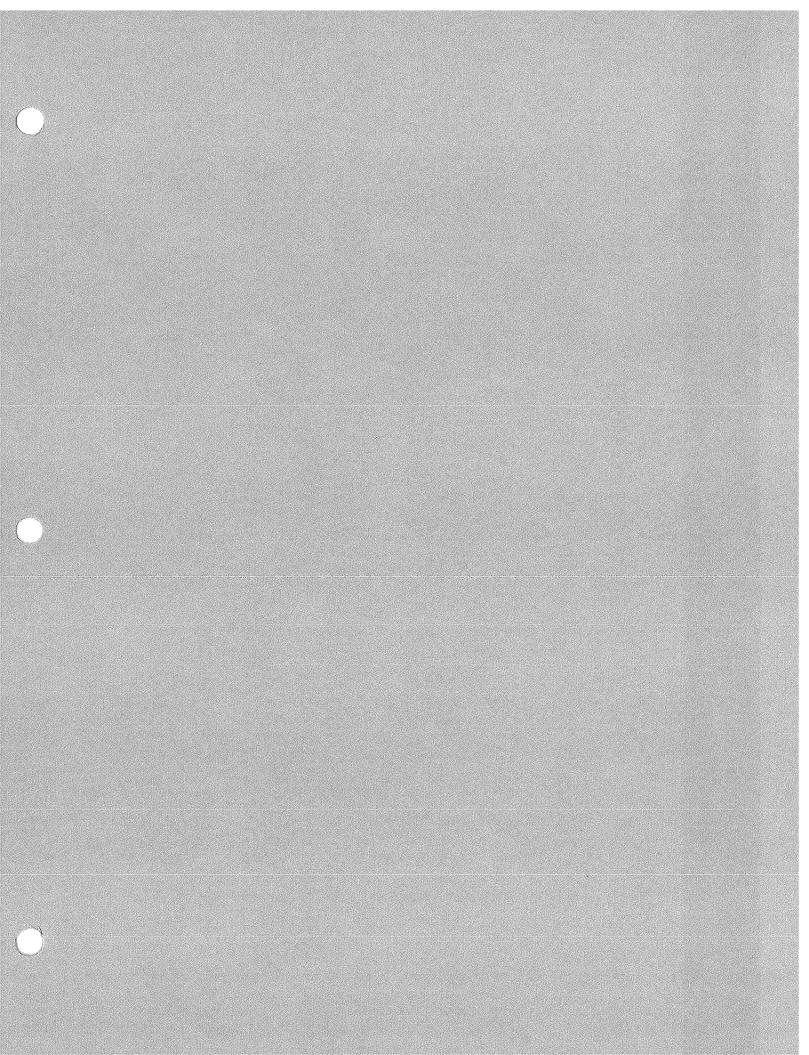
ſ

| 4.4             |           |
|-----------------|-----------|
| (feet of water) | (gal/min) |
| 44.76           | 4.8000    |
| 64.95           | 6.0000    |
| 84.31           | 7.0000    |

i

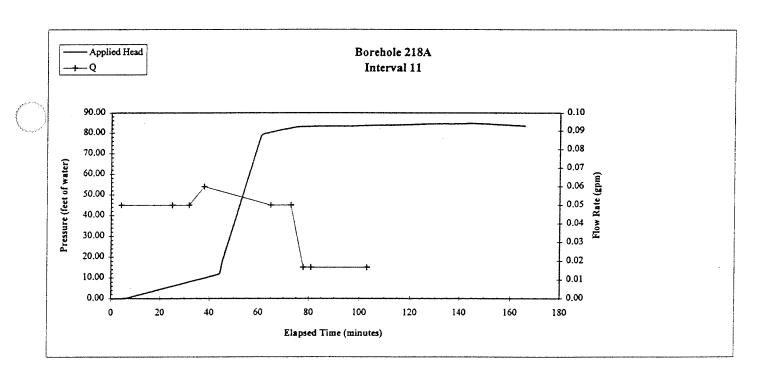



| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |


| Borehole        | 218A      |
|-----------------|-----------|
| Interval Number | 10 retest |

## Plot data

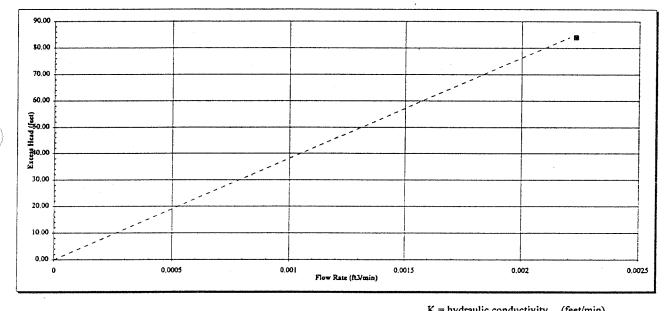
| Applied Head    | Flow Rate (Q)                     | Flow Rate (Q)                                             |
|-----------------|-----------------------------------|-----------------------------------------------------------|
| (feet of water) | (gal/min)                         | (ft <sup>3</sup> /min)                                    |
| 44.76           | 4.8000                            | 0.6418                                                    |
| 64.95           | 6.0000                            | 0.8022                                                    |
| 84.31           | 7.0000                            | 0,9359                                                    |
|                 | (feet of water)<br>44.76<br>64.95 | (feet of water) (gal/min)<br>44.76 4.8000<br>64.95 6.0000 |



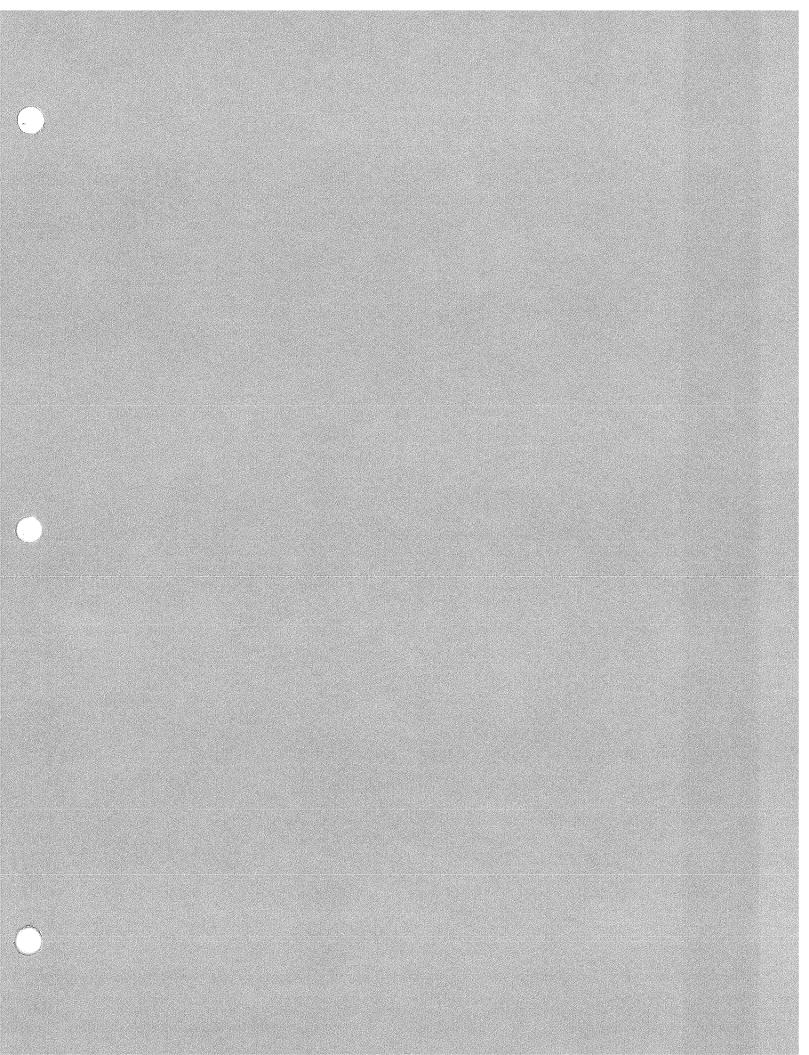

| K = 1/   | (2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow<br>he = App<br>L = lengt |                   |                              | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|----------------------------------------|-----------------------------------|-------------------|------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                 |                                   |                   |                              |                                                                    |
| K =      | 2.8E-04 cm/s<br>5.5E-04 feet/min       | Q =<br>h <sub>e</sub> =           | 0.7706<br>44.7600 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 2.2E-04 cm/s<br>4.3E-04 feet/min       | Q =<br>h <sub>e</sub> =           | 1.1238<br>84.3100 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 1.20E-04 cm/s<br>2.38E-04 feet/min     | Trendline Slope                   | 134.18            | 3                            |                                                                    |



| 061.197.2.14                                   |                                                  |                                                                        |                                   |                                           |                                        |                                           |                                                                                                                  | ges                     | Average Q<br>(gal/min)           |          |          |                   | 0.00     | 00.0     | <b>00</b> .0 | 0.00                   | 0.00     | 000      | 000      | 000           | 00:0     | 0.00         | 00.0          | 0.0          | 80 G     | 000          | 00.0     | 0.00         | 0.00         | 0.0            | 00.0                 | 80       | 000      | 000      | 0.00          |
|------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|----------|----------|-------------------|----------|----------|--------------|------------------------|----------|----------|----------|---------------|----------|--------------|---------------|--------------|----------|--------------|----------|--------------|--------------|----------------|----------------------|----------|----------|----------|---------------|
|                                                |                                                  |                                                                        |                                   |                                           |                                        |                                           |                                                                                                                  | 5 Point Moving Averages | Δ time<br>(minutes)              |          |          |                   | P0.0-    | 10.0-    | 101          | 0.00                   | 10.0     | 0.05     | 000      | 000           | 0.00     | 90.0         | 0.00          | 10.0-        | 90.0-    | 100          | 00.0     | 00.0         | 0.00         | 10.0           | 10.0                 | 0.00     | 10.0-    | -0.05    | 0.00          |
|                                                |                                                  |                                                                        |                                   | bepth (R)                                 | 349.73                                 | 351.43                                    |                                                                                                                  | 5 Point 1               | Applied Head<br>(feet of water)  |          |          |                   | 60.01    | 60 Q     | 9 9          | 010                    | 0.10     | 9 9      | 2 2      | 01.0-         | 60.0-    | 60.07        | <b>6</b><br>9 | 10.0<br>7    | 8.9      | 60.0         | 60.0     | 60.0-        | <b>60</b> .9 | 60.07<br>90.07 | 0.10                 | 010-     | 010      | 01.0     | -0.11         |
|                                                |                                                  |                                                                        | ulation:                          | Bottom of interval<br>Vertical Depth (ft) | 350,00 Above<br>359.90 Bolow           | 1 of interval (A)                         |                                                                                                                  |                         | Average Q A<br>(gal/min) (1      |          |          | 0.00              | 0.00     | 0.00     | 0.00         | 0.00                   | 00.0     | 00.0     | 0.00     | 00.0          | 0.00     | 0.0          | 0.0           | 0.00         | 0.00     | 0.00         | 0.00     | 0.00         | 0.00         | 0.00           | 0.00                 | 0.00     | 0.00     | 0.00     | 0.00          |
|                                                |                                                  |                                                                        | True vertical deptà calculation:  | Bott<br>Hole depth (ft)                   | Above<br>Below                         | Vartical depth of bottom of interval (ft) |                                                                                                                  | 3 Point Moving Averages | Δ time Av<br>(mins) (g           |          |          | <b>10</b> 10-     | 20.05    | 0.00     | 0.00         | -0.03                  | 0.00     | 10.0     | 0.00     | -0.05         | 0.00     | 0.05         | 104           | 20.0-        | 10.0-    | <b>10</b> .0 | 0.04     | 0.04         | 5 5          | 0.0            | 0.05                 | 10.0-    | -0.05    | 0.00     | 0.00          |
|                                                |                                                  |                                                                        | Ta                                |                                           | 329.74<br>53.92.73                     | 334.19 Ver                                |                                                                                                                  | 3 Point N               | Applied Head<br>(feet of water)  |          |          | 10.01             | 0.0      | 010      | 60.07        | <del>(</del> 0)<br>(0- | 01.14    | 80       | 60.0     | 60.0-         | 1.0      | <b>66</b> .0 | 10.0-         | <b>10</b> .0 | -0.10    | -0.10        | -0.10    | <b>10</b> .0 | 10 T Q       | 110            | 60.0                 | 60.07    | 60.0-    | 11.0-    | 11.0-         |
|                                                |                                                  | uddie packer<br>skole                                                  | calculation:                      | Top of interval<br>Vertical               | 330.00 Abave<br>340.00 Below           | p of interval (N)                         | and the second |                         |                                  |          |          |                   |          |          |              |                        |          |          |          |               |          |              |               | j.           |          |              | 1.       |              |              |                |                      |          |          |          |               |
| $\left(\begin{array}{c} \\ \end{array}\right)$ |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation:  | iepth (fl)                                | Above<br>Below                         | Vertical depth of top of interval (f)     |                                                                                                                  |                         | Q<br>(gal/min)                   |          |          |                   |          |          |              |                        |          |          |          |               |          |              |               |              |          |              |          |              |              |                |                      |          |          |          |               |
|                                                |                                                  |                                                                        | F-1                               |                                           | ~, 62                                  | -                                         |                                                                                                                  |                         | Applied Head<br>(fect of water)  | -0.07    | -0.07    | -0.0 <del>0</del> | 11.0-    | 11.0-    | -0.07        | 11 07 9                | 11.0-    | -0.11    | -0.06    | 11.0          | 1 i      | -0.0¢        | 90.CP         | -0.11        | -0.07    | 11.0-        | 11.0     | 10.0-        | 11.0         | 11.0-          | -0.11                | 90°9     | 11.0-    | -0.11    | 11.0-         |
|                                                |                                                  |                                                                        | inch <b>es</b>                    | foct<br>fect below top of casing          | feet below top of casing               | feet below top of casing                  |                                                                                                                  |                         | Measured Head<br>(feet of water) | -0.07    | -0.07    | 90 (Q             |          | 11 97    | -0.07        | 010-                   | 11.0-    | 11.0-    | -0.06    | 1.9           |          | 90.0         | 90.0-         | 11.0-        | -0.07    | 0.11         | 11.0-    | 10.07        | -0.11        | 11.0-          | 11.0-                | 90.0     | 11.0-    | 11.0-    | 11.0-         |
|                                                | +e/CSSA                                          |                                                                        |                                   |                                           | a 0/100<br>3 52.71<br>3 65 800         |                                           |                                                                                                                  |                         | Elapsed time<br>(minutes)        | 0.00     | 0.06     | 0.12              | 050      | 0.36     | 0.42         | 5 09<br>0 00           | 0.66     | 0.78     | 0.34     | 96:0<br>C 0 1 | 11       | 1.20         | 1.26          | 1.12         | ¥ :      | 08.7         | 9 80     | 26.1         | 161          | 1.98           | 2.16                 | 111      |          | 12.2     | 807           |
|                                                | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>11<br>J-Nov-95                                                 |                                   | d F                                       |                                        |                                           | 000<br>01<br>01                                                                                                  |                         | Elapsed time<br>(hours)          | 0:00     | 00.0     | 0.00              | 0.0      | 10.0     | 10:0         | 100                    | 10:0     | to:0     | 10:0     | 0 07<br>0 02  | 0.02     | 0.02         | 0.02          | 0.02         | 0.02     | (0.0         | (0)<br>0 | £0.0         | 0.03         | 0.03           | <b>1</b> 0.0         | 100      |          |          | 5             |
| Severi                                         | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date                                   | Borehole diameter<br>Borehole dim | Derenue racius<br>Test section location   | Length of test interval<br>Gauge Deoth | Static Water Level                        | General Lithology<br>Sandstone<br>Start Time                                                                     |                         | Clock<br>Time                    | 10,49,09 | E1:69:01 | 10.49.16          | 10:49:27 | 10.49.31 | 10.49.34     | 10.49.45               | 10.49.49 | 10.49.56 | 10.49.59 | 10.00 N       | 10.30.17 | 10.50.21     | 10:50.25      | 10.50.28     | 55-05-01 | 10.00.01     | 10.12.01 | 10:51:04     | 10.51:05     | 10.12.01       | 10:51,19<br>55:11:01 | 77:16:01 | 77:10:01 | 11.12.01 | 11.11.11.11.1 |


# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)83.960.017




| Client          | Morrison-Maierle/CSSA |
|-----------------|-----------------------|
| Site            | Miner Flat            |
| Project No.     | 943-27691             |
|                 |                       |
| Borehole        | 218A                  |
| Interval Number | 11                    |

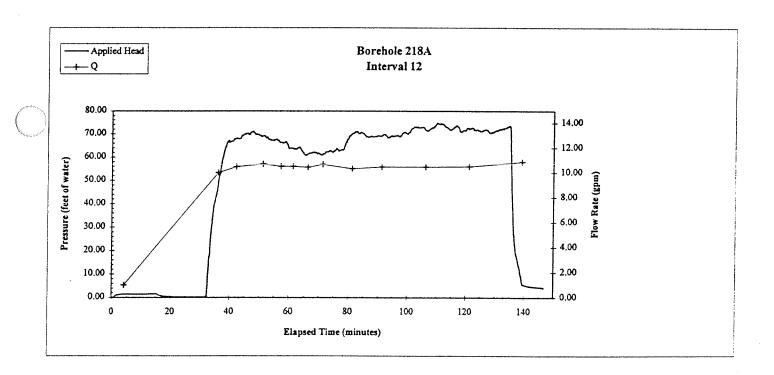
Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 83.96           | 0.017         | 0.0022                 |
|                 |               |                        |



| K = 1/(                         | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | K = nydraulic conc<br>Q = Flow rate<br>he = Applied head<br>L = length of interv<br>r = borehole radius | val tested | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|---------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------|
| Range of hydraulic conductivity |                                             |                                                                                                         |            |                                                                    |
| K =                             | 5.8E-07 cm/s                                | Q = 0.002                                                                                               | ft³/min    |                                                                    |
|                                 | 1.1E-06 feet/min                            | h. = 83.96                                                                                              | feet       |                                                                    |



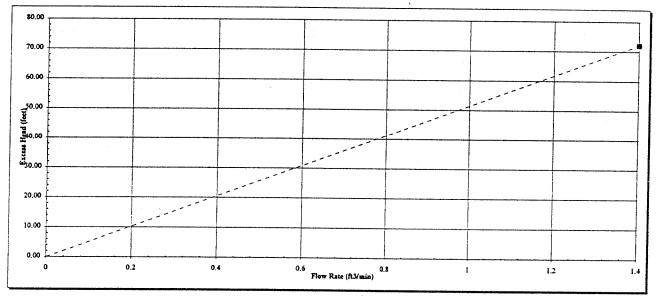

| 06116425166 |                                                  |                                                                        |                                                                                                                                                                                    | 5 Point Moving Averages | Δ time Average Q<br>(minutes) (gal/min) |              |           |          |              | 0.00     |             |          | 00'0<br>00'0         |          |              | 0.00        | 0.15 0.00   |          |          |               |             |             |          |          |          |          |          | 0.00 0.00    |          | 0.00     |
|-------------|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--------------|-----------|----------|--------------|----------|-------------|----------|----------------------|----------|--------------|-------------|-------------|----------|----------|---------------|-------------|-------------|----------|----------|----------|----------|----------|--------------|----------|----------|
|             |                                                  |                                                                        | rai<br>Vertical Depth (ft)<br>Above 339.73<br>Below 349.73<br>J (ft) 340.82                                                                                                        | 5 Point Mc              | Applied Head (<br>(feet of water) (n    |              |           | 0.00     | 0.0          | 00.0     | 0.01        | 10.0     | 10.0                 | 0.07     | 673          | 0.40        | 75.0        | 0.87     | 0.90     | 6.0           | 0.97        | 1.00        | 1.03     | 1.07     |          |          |          |              | 1 -      | 17.1     |
|             |                                                  |                                                                        | Z ate                                                                                                                                                                              | 53                      | Average Q<br>(gal/min)                  |              | 0.00      | 0.00     | 00.0         | 0.00     | 0.00        | 00.0     | 0.00                 | 0.00     | 0:00         | <b>0</b> 00 | 8.9         | 00.0     | 0.00     | 0.00          | 0.00        | 0.00        | 00.0     | 0.0      | 0.00     |          | 00.0     | 80           |          | 3        |
|             |                                                  |                                                                        | True vertical depth calculation:<br>Bottom of in<br>Hole depth (ft) 340.00<br>Above 340.00<br>Balow 330.00<br>Vertical depth of bottom of inte                                     | 3 Point Moving Averages | Δ time<br>(mins)                        |              | 0.00      | 0.0      | 8 8 8<br>8 8 | 0.00     | 0.00        | 10.0     | 10.0-                | 0.0      | ( <u>,</u> ) | 6.0<br>5    | 70'0<br>900 | 0.0      | 0.10     | 0.07          | <b>6</b> .0 | 90.0        | 0.07     | 0.12     | <b>3</b> | 8 2      |          | 0.02         | 100      | 5        |
|             |                                                  |                                                                        | a: Tr<br>erval Vertical Depth (ft) Ho<br>Above 319.74<br>Below 329.74<br>al (ft) 323.83 Ve                                                                                         | 3 Point                 | Applied Head<br>(feet of water)         |              | 0.00      | 000      | 000          | 0.00     | 000         | 0.01     | 10.0                 | 0.00     | 11.0         | 8C.0        | 619         | 0.87     | 06.0     | <b>\$</b> 5:0 | 0.97        | 0.99        | 1.02     | /0/1     |          | 1        | 9        | 6            | 1.71     |          |
|             |                                                  | addle packer<br>rabole                                                 | True vertical depth calculation:<br>Top of laterval<br>Hole depth (ft) Vertical<br>Above 330.00 Above 330.00 Below<br>Below 330.00 Below<br>Vertical depth of top of laterval (ft) |                         |                                         |              | li julija | ,        |              |          |             |          |                      | 24<br>10 |              |             |             |          |          |               |             |             |          |          |          |          | 1.45     |              | •        | 411.14   |
| ()          |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation:<br>Top of later<br>Hole depth (ft) 70 p of later<br>Above 330.00 A<br>Below 330.00 B                                                              |                         | Q<br>(gal/min)                          |              |           |          |              |          |             |          |                      |          |              |             |             |          |          |               |             |             |          |          |          |          |          |              |          |          |
|             |                                                  | r 0 0                                                                  | ~ 8 ~ 8                                                                                                                                                                            |                         | Applied Head<br>(feet of water)         | 0.03         |           |          |              |          | 000<br>0000 |          | 0.00                 |          | 10.0         | 010         |             |          |          | 0.95          |             | 001         |          | 8        |          |          |          |              | 1 20     |          |
|             |                                                  |                                                                        | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                     |                         | Measured Head<br>(feet of water)        | 0.03<br>0.00 | 00.0      | 00:0     | 00.00        | 00.0     | 00:0        | 0.02     | 0.00                 | 00.0     | EC.0         | 010         | 0.85        | 0.15     | 0.0      | 26.0          | /60         | <b>0</b> .1 | 101      | 1 3      | 1.14     | 1.16     | 1,18     | 1.20         | 1.20     |          |
|             | rle/CSSA                                         |                                                                        | 3.78<br>0.16<br>341.09<br>15.00<br>208.69<br>208.57                                                                                                                                |                         | Elapsed time<br>(minutes)               | 0.00<br>0.06 | 0.12      | 0.24     | 0.36         | 0.42     | 0910        | 0.72     | 0.78                 | 0.96     | 1.02         | 101         | 1.44        | 1.44     | 951      | 9C 1          | 97 I        | 164         | 01       | 1.86     | 1.98     | 2.04     | 2.10     | 111          | 2.28     |          |
|             | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>12<br>3-Nov-95                                                 | Tep<br>Belless                                                                                                                                                                     | 14:13:49                | Elapsed time<br>(hours)                 | 0.00         | 000       | 00'0     | 0.01         | 10.0     | 10.0        | 10.0     | 10:0                 | 0.02     | 0.02         | 0.02        | 0.02        | 0.02     | 50'D     | 100           | 00          | 600         | £0.0     | 0.03     | 0.03     | CD.0     | 6.04     | <b>1</b> 0.0 | 50       |          |
| wmc/t       | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borebole diameter<br>Borebole radiua<br>Test section location<br>Length of test laterval<br>Gauge Depth<br>Static Water Level<br>General Lithology                                 | Sandstone<br>Start Time | Clock<br>Time                           | 14:13:49     | 14.13.56  | 14.14.03 | 14:14:11     | 14.14.21 | 14:14:25    | 14:14:32 | 14:14:36<br>14:14:30 | 14:14:47 | 14:14:50     | 14:15:12    | 14:15:15    | 14:15:15 | 11-11-11 | 14-15-23      | 14.15.26    | 06,21.51    | 14:15:37 | 14:15:41 | 14:15:41 | 14:15:51 | 14:15:55 | 14:16:02     | 14:16:06 | 14-16-00 |

Ooklar Associates

218A12A CHA, Input Data

www.t/

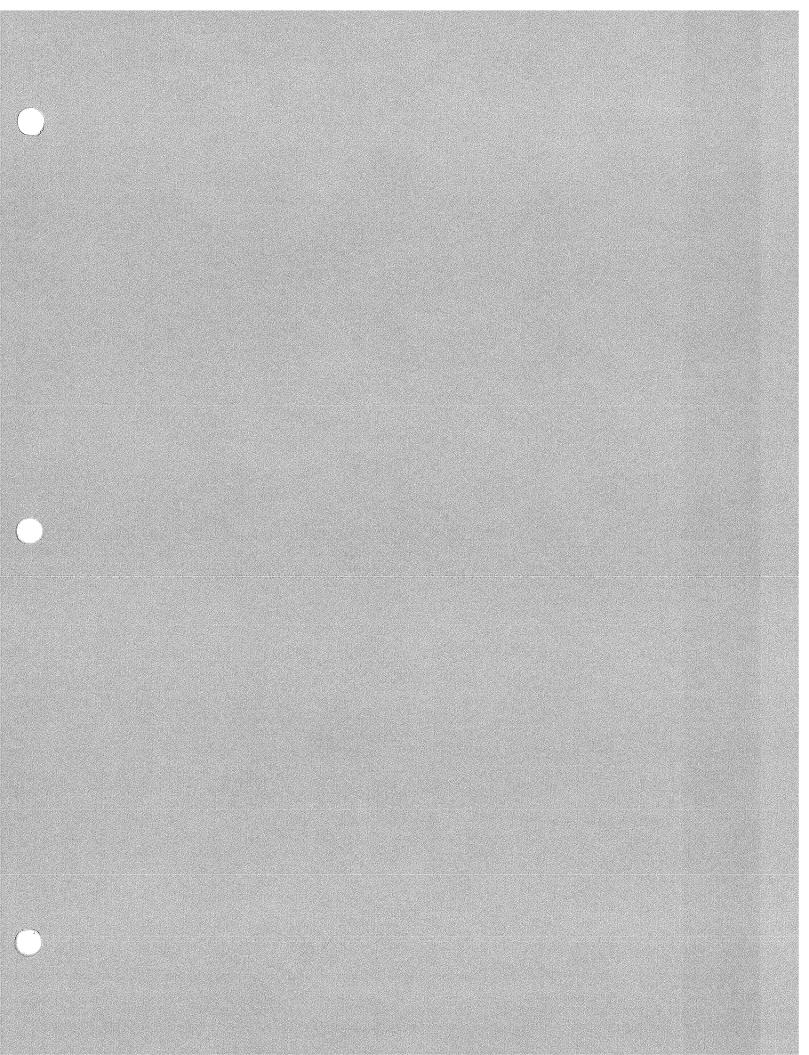
| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 72.00           | 10.470        |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole218AInterval Number12

# Plot data


| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
|                 |               |                        |

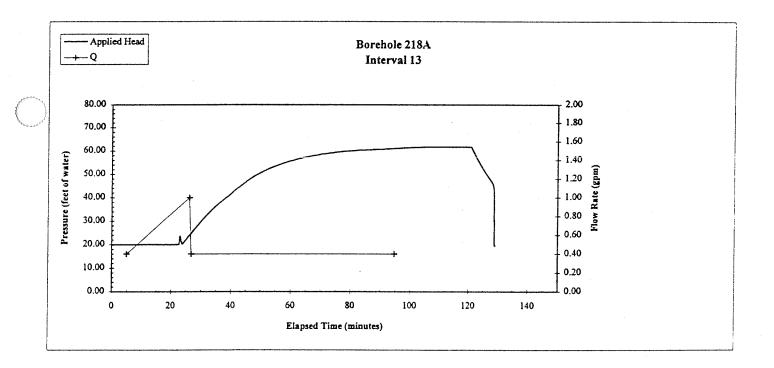


| K = 1/(    | $2\pi L$ ) x (Q/h <sub>e</sub> ) x in (L/r) | Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|
| Range of l | nydraulic conductivity                      |                                                                                            |                                                      |
| K =        | 4.8E-04 cm/s                                | $Q = 1.400 \text{ ft}^3/\text{min}$                                                        |                                                      |

K = hydraulic conductivity (feet/min)

| L = 4.8E-0 | 4 cm/s     | Q =              | 1.400 | ft'/min |
|------------|------------|------------------|-------|---------|
| 9.4E-0     | 4 feet/min | h <sub>e</sub> = | 72.00 | feet    |

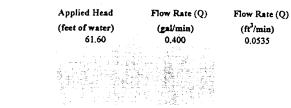


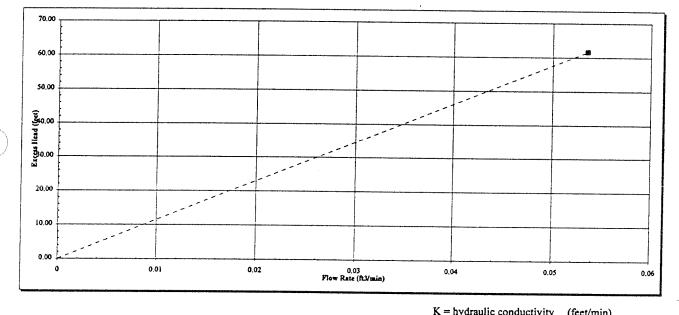

| inches<br>feet<br>feet<br>feet<br>feet below top of casing<br>feet of water) (feet<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Type:<br>Constant head, Straddle packer<br>Gange located downhole<br>True vertical depth calculation:<br>Top of laterval<br>Hiole depth (n) Vertical<br>Above 60,00 Blow<br>Bolow 60,00 Blow | al<br>ertical Depth (f)<br>bove 9396<br>elow 3334<br>(f) 33.70<br>(fcet of w   |                                    | ulation:<br>toom of inte<br>70.00<br>to 00<br>to 00<br>to 1ntervy<br>verage Q<br>gaVmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al Depth (f<br>9.9<br>71.5<br>71.5<br>71.5<br>71.5<br>71.5<br>71.5<br>71.5<br>71.5 | )<br>1<br>1<br>5<br>5<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | sges<br>Average Q<br>(gal/min) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|
| 218A<br>13<br>13.78 inchea<br>0.16 foet<br>Trp 3.75 foet below top of casing<br>2.487 foet below top of casing<br>2.45.25 foet below top of casing<br>4.5.25 foet below top of casing<br>2.68.57 foet below top of casing<br>2.69.00 000<br>0.00 000<br>0.00 000<br>0.00 000<br>0.01 0                                                                                                                                                                                                                                                                                                                                                                                  | Test Type:<br>Coastast basd, Straddle p<br>Gasge located downhole<br>True vertical depth calcul<br>Hole depth (ft)<br>Above<br>Above<br>Below<br>Vertical depth of top of lat                     | al<br>eritcal Depth (f)<br>bove 99.96<br>elow 33.70<br>(f) 33.70<br>(fcet of w |                                    | ulation:<br>100m of late<br>70.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10 | cal Depth (f)<br>* 90.9<br>71.3<br>Applied<br>(fect of                             | Moving Avera<br>A time /                                                                              | çes<br>Lverage Q<br>(gal/min)  |
| 3.78       inclusion         0.16       feet         0.15       feet         0.16       feet         24.87       feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | True vertical depth calcul<br>Tep of<br>Ilote depth (ft) 30<br>Abvo 50<br>Bolow 60<br>Vertical depth of top of In                                                                                 | cal Depth (f)<br>93.94<br>33.70<br>33.70<br>33.70<br>33.70<br>(feet of w       |                                    | ulation:<br>tom of inte<br>20.00<br>m of intervi<br>m of intervi<br>verage Q<br>gaVmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cal Depth (f)<br>* 79.9<br>71.3<br>Applied<br>(feet of (                           | Moving Avera<br>d time /                                                                              | gca<br>vvcrage Q<br>(gal/min)  |
| Return         78.62<br>24.87         feet below top of casing<br>4.6.25         feet below top of casing<br>2.8.87         feet below top of casing<br>feet           11:30:14         11:30:14         Measured Head<br>(hours)         Measured Head<br>(fours)         Measured Head<br>(fours)           0.00         0.00         0.00         0.01         0.01           0.00         0.00         0.01         0.01         0.01           0.00         0.01         0.02         0.01         0.01           0.00         0.02         0.01         0.01         0.01           0.01         0.12         0.01         0.01         0.01           0.01         0.13         0.02         0.01         0.02           0.01         0.14         0.02         0.01         0.02           0.01         0.12         0.02         0.02         0.01           0.01         0.24         0.02         0.02         0.02           0.01         0.24         0.02         0.02         0.02           0.01         0.24         0.02         0.02         0.02           0.02         0.02         0.02         0.02         0.02           0.02         0.02         0.02         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Above 50<br>Balow 60<br>Vertical depth of top of lat                                                                                                                                              | 49.56<br>33.70<br>33.70<br>Applied 1<br>(feet of w                             |                                    | 70.00<br>140.00<br>mofiatervi<br>vcrage Q<br>gal/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applied<br>(feet of                                                                | Moving Avera<br>d time /<br>(minutes)                                                                 | çci<br>veraçe Q<br>(gal/min)   |
| Elapsed time       Measured Head         (minutes)       (feet of water)         010       0.00         013       0.01         014       0.02         013       0.01         014       0.02         015       0.01         016       0.02         017       0.02         018       0.02         019       0.02         010       0.02         024       0.02         035       0.02         036       0.01         037       0.02         038       0.02         039       0.02         031       0.02         032       0.02         034       0.02         035       0.02         036       0.02         037       0.02         038       0.02         039       0.02         114       0.02         126       0.02         127       0.02         128       0.02         129       0.02         120       0.02         121       0.02         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | Applied  <br>(feet of w                                                        |                                    | ses<br>Average Q<br>(g∎Vmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Applied<br>(feet of                                                                | Moving Avera                                                                                          | çei<br>Lverage Q<br>(gal/min)  |
| Elapsed time         Measured Head           (minutes)         (feet of water)           0.00         -0.01           0.00         -0.01           0.00         -0.01           0.12         -0.01           0.13         -0.01           0.14         -0.01           0.15         -0.01           0.16         -0.01           0.17         0.02           0.18         -0.01           0.19         -0.01           0.11         -0.02           0.12         -0.01           0.13         -0.02           0.14         -0.02           0.15         -0.02           0.16         -0.02           0.17         -0.02           0.18         -0.02           0.19         -0.02           1.14         -0.02           1.15         -0.02           1.14         -0.02           1.15         -0.01           1.16         -0.01           1.18         -0.01           1.18         -0.01           1.18         -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | J FOI<br>Applied Head<br>(feet of water)                                       | at Moviag Aver<br>d time<br>(mins) | iges<br>Average Q<br>(gal/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 Point<br>Applied Head<br>(feet of water)                                         | Moving Avera<br>A time /<br>(minutes)                                                                 | çes<br>Lverage Q<br>(gal/min)  |
| (minutes) (feet of water) 000 000 001 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | (feet of water)                                                                |                                    | (gaVmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (feet of water)                                                                    |                                                                                                       | (gal/min)                      |
| 0.00<br>0.05<br>0.11<br>0.11<br>0.11<br>0.12<br>0.36<br>0.36<br>0.34<br>0.34<br>0.36<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02      | water) (gal/min)                                                                                                                                                                                  |                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                                                                                                       |                                |
| 0.12<br>0.13<br>0.36<br>0.36<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                 |                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                                                                                                       |                                |
| 0.14 0.00<br>0.35 0.02<br>0.35 0.02<br>0.34 0.02<br>0.59 0.02<br>0.78 0.02<br>0.78 0.02<br>0.96 0.02<br>1.14 0.02<br>1.14 0.02<br>1.16 0.02 0.02<br>1.16 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0                                                                                    |                                                                                                                                                                                                   | 16.61                                                                          | 10 01                              | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                    |                                                                                                       |                                |
| 0.02<br>0.42<br>0.42<br>0.42<br>0.42<br>0.77<br>0.78<br>0.01<br>0.78<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                   | <b>M</b> 61                                                                    | 0.03                               | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.91                                                                              | 10.0-                                                                                                 | 0.00                           |
| 0.42<br>0.54<br>0.50<br>0.77<br>0.78<br>0.78<br>0.78<br>0.96<br>0.92<br>0.92<br>0.92<br>1.14<br>0.92<br>1.14<br>1.20<br>0.92<br>1.20<br>0.92<br>1.20<br>0.92<br>1.20<br>0.92<br>1.20<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.92<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>1.26<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0                                                                                                                                                         |                                                                                                                                                                                                   | <b>19.91</b>                                                                   | 0.00                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.94                                                                              | 0.03                                                                                                  | 0.00                           |
| 0.54 0.02<br>0.77 0.02<br>0.78 0.02<br>0.78 0.02<br>0.78 0.02<br>0.96 0.02<br>1.14 0.02<br>1.14 0.02<br>1.26 0.02<br>1.14 0.02<br>1.26 0.02<br>1.16 0.02<br>1.16 0.02<br>1.16 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   | 66.61<br>56.61                                                                 | 00.0                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.95<br>19.91                                                                     | 10:0                                                                                                  | <b>00</b> .0                   |
| 0.02<br>0.77<br>0.78<br>0.78<br>0.96<br>0.96<br>0.96<br>0.02<br>1.14<br>1.10<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | 56.61                                                                          | 0.00                               | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.61                                                                              | 000                                                                                                   | 000                            |
| 0.02<br>0.94<br>0.96<br>0.96<br>0.96<br>0.02<br>1.10<br>1.10<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | 56.61                                                                          | 0.00                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.61                                                                              | 0.00                                                                                                  | 000                            |
| 0.00<br>0.96<br>0.96<br>1.10<br>1.11<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>0.02<br>1.26<br>0.02<br>1.61<br>1.62<br>0.01<br>1.60<br>0.01<br>1.60<br>0.01<br>0.01<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   | 26.61<br>20.01                                                                 | 0.0                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.95                                                                              | 0.00                                                                                                  | 0.00                           |
| 0.96<br>1.02<br>1.14<br>1.14<br>1.20<br>1.26<br>1.26<br>1.26<br>0.02<br>1.38<br>0.02<br>1.61<br>1.62<br>0.02<br>1.64<br>0.02<br>1.64<br>0.02<br>1.64<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                   | 19.93                                                                          | 8.9                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.95<br>19.91                                                                     | 0.00                                                                                                  | 0.00                           |
| 1.02<br>1.14<br>1.26<br>1.26<br>1.26<br>1.26<br>1.28<br>1.26<br>1.24<br>1.44<br>1.44<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.62<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1.64<br>1 |                                                                                                                                                                                                   | <b>K</b> /61                                                                   | 3                                  | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F 2                                                                                | ()<br>()<br>()                                                                                        | 8.0                            |
| 1.14 0.02<br>1.26 0.02<br>1.38 0.02<br>1.44 0.01<br>1.56 0.02<br>1.56 0.02<br>1.60 0.02<br>1.60 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | <del>16</del> '61                                                              | 0.00                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.61                                                                              | 0.00                                                                                                  | 80.0                           |
| 1.26 0.02<br>1.31 0.02<br>1.44 0.01<br>1.62 0.02<br>1.64 0.02<br>1.64 0.02<br>1.64 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   | <b>1</b> 6.61                                                                  | 0.04                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.94                                                                              | 0.00                                                                                                  | 0.00                           |
| 138 0.02<br>144 0.01<br>156 0.02<br>1.62 0.02<br>160 0.02<br>100 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   | (6.61<br>10 01                                                                 | 88                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.91                                                                              | 9.04                                                                                                  | 0.00                           |
| 1.44 0.01<br>1.56 0.02<br>1.62 0.02<br>1.68 0.02<br>1.60 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   | 56.61                                                                          | 109                                | 80 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CC.VI                                                                              | -0.01                                                                                                 | 0.00                           |
| 1.56 0.02<br>1.62 0.02<br>1.68 -0.01<br>1.80 -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   | 5661                                                                           | 0.0                                | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.61                                                                              | 8.0                                                                                                   | 0.0                            |
| 1.62 0.02<br>1.68 -0.01<br>1.80 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | 56'61                                                                          | 0.01                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.61                                                                              | 0.03                                                                                                  | 000                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | 19:91                                                                          | -0.03                              | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.94                                                                              | 0.00                                                                                                  | 0.00                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | 19.91                                                                          | -0.01                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.91                                                                              | -0.01                                                                                                 | 0.0                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | <b>E6</b> .61                                                                  | 0.02                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.94                                                                              | 10.0-                                                                                                 | 0.00                           |
| 16 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | 16.61                                                                          | 0.00                               | 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.93                                                                              | 0.02                                                                                                  | 00.0                           |
| 2.04 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | <b>19.91</b>                                                                   | 0.0                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>16.61</b>                                                                       | 00.00                                                                                                 | 0.00                           |
| 2.10 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | <b>4</b> .61                                                                   | 8.5                                | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.94                                                                              | 0.00                                                                                                  | 0.00                           |
| 2.22 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | M.61                                                                           | 0.00                               | 9. i<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.91                                                                              | 000                                                                                                   | 0.00                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | <b>1</b>                                                                       | 88                                 | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.94<br>10.04                                                                     | 00.0                                                                                                  | 0.00                           |
| 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | 16.61                                                                          | 8                                  | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.94<br>10.04                                                                     | <b>0</b> 0.0                                                                                          | 0.00                           |

**Golder Associates** 

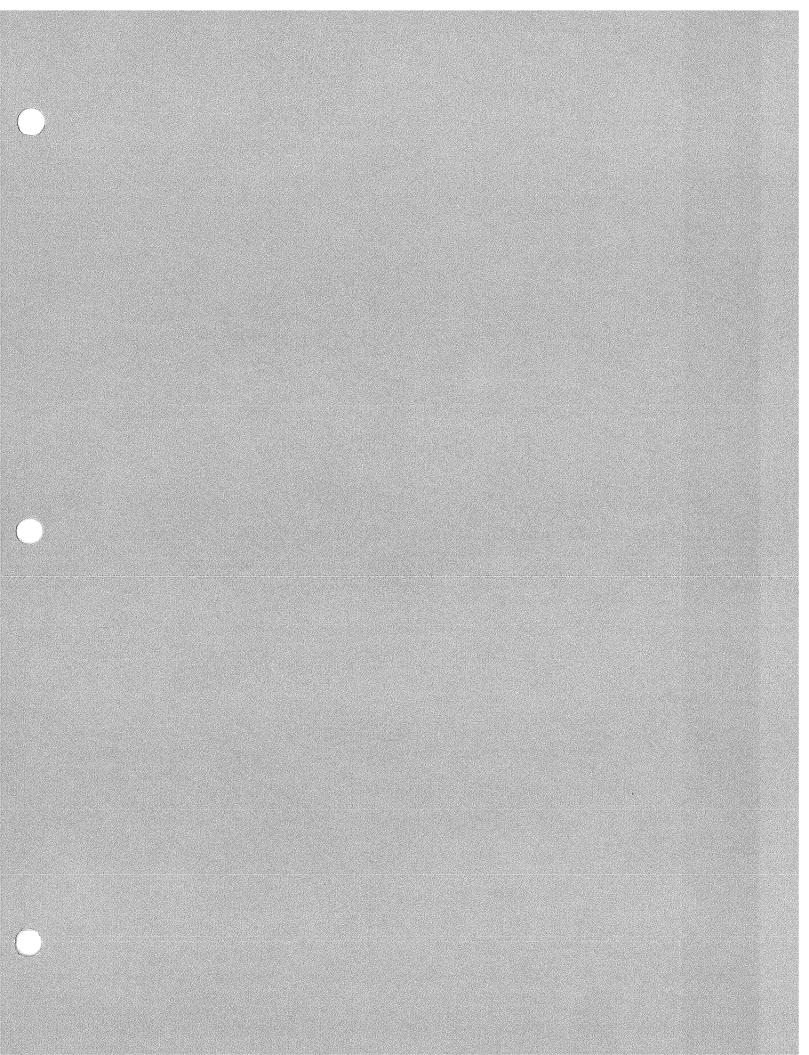
218A13A CHA, Input Data

# 011.101.200


| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 61.60           | 0.400         |




ClientMorrison-Maierle/CSSASiteMiner FlatProject No.943-27691


Borehole218AInterval Number13

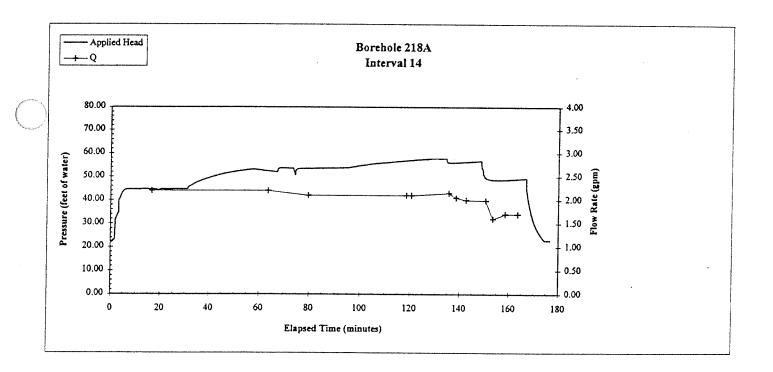
## Plot data



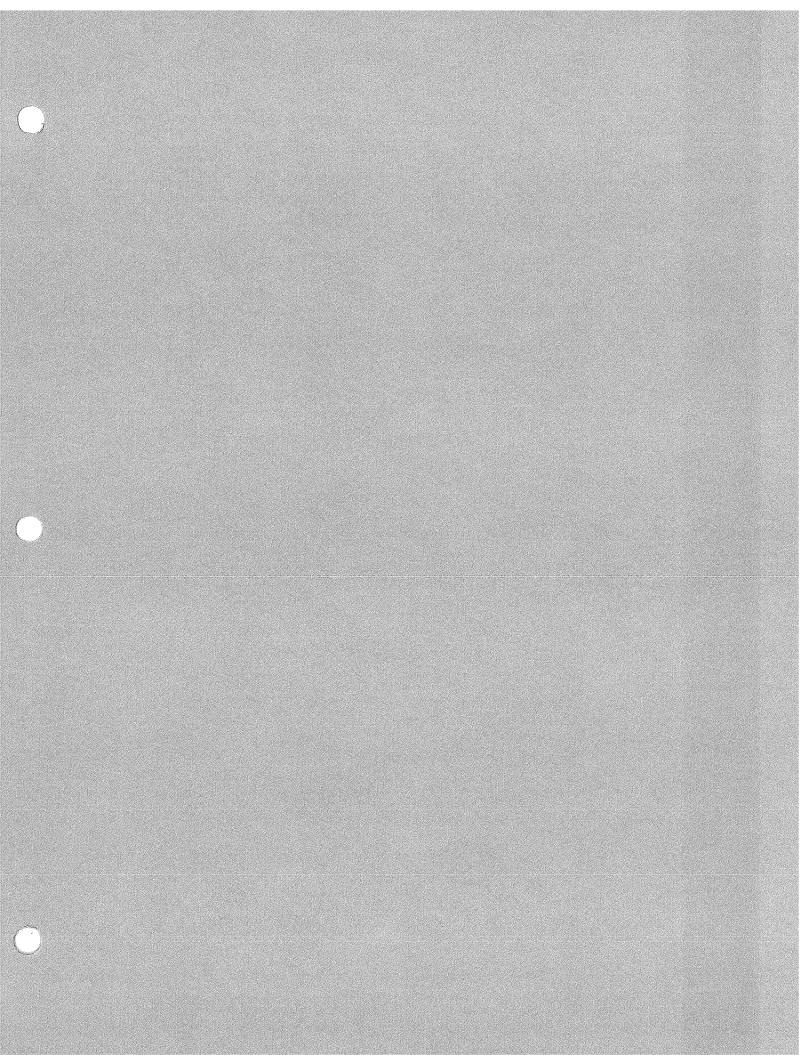


| K = 1/(  | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|---------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|
| Range of | hydraulic conductivity                |                                                                                            |                                                      |
| K =      | 1.4E-05 cm/s<br>2.8E-05 feet/min      | $Q = 0.054 \text{ ft}^3/\text{min}$<br>h. = 61.60 feet                                     |                                                      |




| 0(1)162-EFG    |                                                  |                                        |                                      |                                                              |                                                                                         |                                           |                         | Average Q                        | (gal/min) |          |                 | 00.0         | 0.00                 | 00'0<br>00 0     | 000      | 0,00                 | 0.00      | 00.0     | 01.00    | 8.8         | 8              | 0.00     | 0.00     | 0.00     | 80             | 0.00     | 0.00        | 900                  | 000      | 000            | 0.00     | 00.0           |
|----------------|--------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------|-----------|----------|-----------------|--------------|----------------------|------------------|----------|----------------------|-----------|----------|----------|-------------|----------------|----------|----------|----------|----------------|----------|-------------|----------------------|----------|----------------|----------|----------------|
|                |                                                  |                                        |                                      |                                                              |                                                                                         |                                           | 5 Point Moving Averaged | ∆ time                           | (minutes) |          |                 | 20.05        | (0.0-                | 0.02             | 0.12     | 0.10                 | 60 0<br>0 | 0.11     | 0.15     | 040         | 0.48           | 0.52     | 61.0     | 2.15     | 1.42           | 61.11    | 11.29       | ¥1.6                 | 5.70     | 6.01           | 6.07     | 6.10<br>0.95   |
|                |                                                  |                                        |                                      | rval<br>Vertical Depth (ft)                                  | Above 49.96<br>Below 59.94                                                              | 1) 54.07                                  | 5 Point                 | Applied Head                     |           |          |                 | 22.42        | 174<br>174           | 4<br>1<br>1<br>1 | 12.44    | 22.46                | 222       | 22.55    | 22.58    | 62.22       | 22.88          | 00.62    | 23.10    | 95.EZ    | 25.26          | 27.49    | 29.74       | 00.75<br>28.16       | 15.55    | 36.75          | 19.76    | 39.20<br>40.50 |
|                |                                                  |                                        | th calculation:                      | ÷.                                                           | 80,00<br>80,00<br>80,00                                                                 | Vertical depth of bottom of interval (ft) | 1205                    | Average Q<br>(gal/min)           |           |          | 00.00           | 0.00         | 0.00                 | 00.0             | 0.00     | 00 D                 | 0.00      | 0.00     | 0<br>0   | 00.0        | 0.00           | 00.00    | 0.00     | 00.0     | 00.00          | 00.00    | 8.0         | 000                  | 0.00     | 0.00           | 0.00     | 0.00           |
|                |                                                  |                                        | True vertical depth calculation:     | Hole depth (ft)                                              | Above<br>Bolow                                                                          | rtical depth of l                         | 3 Point Moving Averages | Δ time<br>(mins)                 | Ì         |          | 0.02            | 0.00         | -0.0-                | 0.10             | 0.05     | 10 D                 | 0.07      | 0.10     | 0.03     | 0.42        | 0.43           | 90.0     | 0.0      | -0.0ž    | 2.12           | 8.47     | 906<br>Ca C | 90.0                 | 60.0     | 5.64           | 5.92     | 0.43           |
|                |                                                  |                                        | T                                    | Jepth (R)                                                    | 19.99<br>20.98                                                                          | 8A                                        | 3 Point l               | Applied Head<br>(feet of water)  |           |          | 22.43           | 22.43        | 12.45                | 22.41            | 22.44    | 174                  | 22.52     | 22.55    | 1977     | 22.75       | 122.91         | 20,05    | 11.42    | 13.14    | 11.62          | 26.66    | J0.40       | 16,46                | 34.43    | 16.96          | 26.86    | 40.31<br>40.50 |
| $\bigcirc$     |                                                  | ad, Straddle packer<br>tød downhole    | ä                                    | Top of late                                                  | Above 20,00 Above -<br>Below 30,00 Below                                                | (11) IN A MINING IN ACT IN SIGNAL         |                         | Q<br>(gal/min)                   |           |          |                 |              |                      |                  |          |                      |           |          |          |             |                |          |          |          |                |          |             |                      |          |                |          |                |
| ""Elianticus"" |                                                  | Test Type:<br>Constant h<br>Gange loca | True vert                            | Hole depth (ft)                                              | Above<br>Below<br>Varrical d                                                            |                                           |                         |                                  |           |          |                 |              |                      |                  |          | ' iŝ '               |           |          |          |             |                | •        |          |          |                |          |             |                      |          |                |          |                |
|                |                                                  |                                        |                                      |                                                              |                                                                                         |                                           |                         | Applied Head<br>(feet of water)  | 22.42     | 22.43    | 22.40           | 1977<br>1977 | 16.15                | 22.40            | 2.45     | 22.49                | 22.49     | 95.22    | 22.60    | 22.64       | 20.62<br>00.62 | 23.01    | 11.62    | 23.15    | 71-67<br>74.54 | 65 TE    | 10.10       | 34.41                | 34.40    | 14.50<br>40.04 | 40.42    | 84.04          |
|                |                                                  |                                        | inches                               | foct<br>foct below top of casing<br>foet below top of casing | ree octow top of casing<br>foet<br>foet below top of casing<br>foet below top of casing |                                           |                         | Measured Head<br>(feet of water) | 10.0-     | 10'0-    | -0.01<br>0.01   | 00.0         | <b>\$</b> 3.07       | 10.07<br>10.0    | 10:0     | 0.06                 | 90.0<br>L | 0.16     | 0.16     | 0.21        | 40 D           | 0.65     | 67.9     | 0.71     | 2.43           | 176      | 16.11       | 16.11                | 7611     | 12.61          | 86.71    | 18.04          |
|                | rte/CSSA                                         |                                        |                                      | 0.16<br>29.25<br>54 17                                       |                                                                                         |                                           |                         | Elapsed time<br>(minutes)        | 0.00      | 0.06     | 0.12            | 0 30         | 90.0                 | 0.54             | 0.60     | 0.72                 | 0.78      | 0.96     | 1.02     | +1.1<br>0.1 | 1.26           | 171      | 1.44     | 1.62     | 1.68           | 1.92     | 2.9         | 3.06                 | 3.12     | 324            | 3.60     | 3.66           |
|                | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>14<br>4-Nev-95                 |                                      | Tep<br>Bettem                                                |                                                                                         |                                           | 15:02:32                | Elapsed time<br>(hours)          | 0.00      | 0.00     | 90 <del>0</del> | 10.0         | 100                  | 10:0             | 10.0     | 10.0                 | 0 02      | 0.02     | 0.02     | 0.02        | 0.02           | 0.02     | 0.02     | (0.0     | 0.03           | 0.03     | 0.05        | 0.03                 | 0.05     | 0.05           | 90.0     | 90.0           |
| okmell.        | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date   | Borehole diameter<br>Borehole - diam | Test section location                                        | Length of test interval<br>Gauge Depth<br>Static Water Level                            | General Lithology                         | Start Time              | Clock<br>Time                    | 15.02.32  | 15.02:36 | 15.02.43        | 15.02.50     | 15.02.54<br>15.02.57 | 15.03.04         | 10.50.51 | 61.60.61<br>01-61-81 | 15.03.26  | 00.00.01 | EC:E0;E1 | 19.E0.E1    | 15.03.48       | 13.03.55 | 15:03:51 | 15,04,09 | 115.04.13      | 15:04:27 | 15:05:28    | 95.00.01<br>95.00.21 | 15.05.43 | 15:05:46       | 15:06:01 | 15,06,12       |

**Golder Associates** 


218A14A.CHA, Input Data

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 48.60           | 1.700         |
| 56.90           | 2.100         |

7

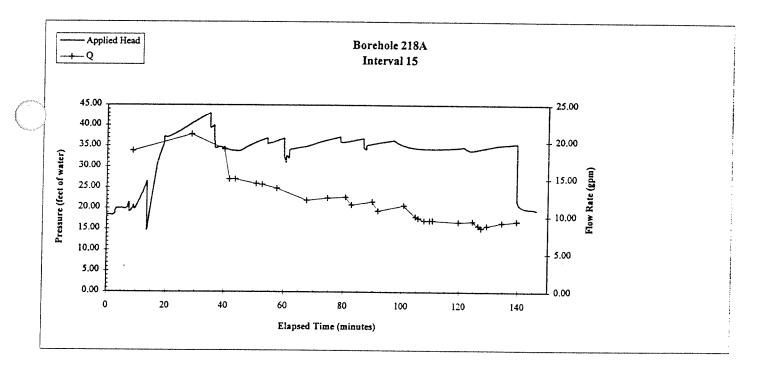


| Constant of the second se | Client<br>Site<br>Project N<br>Borehole |        | Miner Fl<br>943-2769<br>218A |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|------------------------------|---------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------|----------------|-----------------|--------------------------------------------------------------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interval I                              | Number | 14                           |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        | Plot data                    |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |                              | Applied Head<br>(feet of water)<br>48.60<br>56.90 | Flow Rate (Q)<br>(gal/min)<br>1.700<br>2.100 | Flow Rate (Q)<br>(ft <sup>3</sup> /min)<br>0.2273<br>0.2808 |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |                              |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.00                                   |        |                              |                                                   | T                                            |                                                             | 1                             |                | 1               |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.00                                   |        | у                            | = 155.2x + 13                                     | 3.325                                        |                                                             | č.                            |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |                              | $R^2 = 1$                                         |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.00                                   |        |                              |                                                   |                                              |                                                             |                               |                |                 | ······                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l (fact)                                |        |                              |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Excess Head (feet)<br>8                 |        | ·····                        |                                                   |                                              | <u> </u>                                                    |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.00                                   |        |                              |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |        |                              |                                                   |                                              |                                                             |                               | •              |                 |                                                                    |        |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00                                   |        |                              |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |                              |                                                   |                                              |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                    |        |                              | .05                                               | 0.1                                          | 0.15<br>Flow Rate (ft3/min)                                 | 0.2                           |                | 0.25            |                                                                    | <br>دە |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |                              |                                                   |                                              |                                                             |                               |                | ·····           |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        | K = 1                        | /(2πL) x (Q/h <sub>e</sub> ) x l                  | n (L/r)                                      | ·                                                           | Q = Flow $he = Ap$ $L = leng$ | plied head     | l<br>val tested | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        | Range o                      | f hydraulic condu                                 | ctivity                                      |                                                             |                               |                |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        | K =                          | 7.7E-05 cm                                        | n/s                                          |                                                             | Q =                           | 0 227          | ft³/min         |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |                              | 1.5E-04 fee                                       |                                              |                                                             | h <sub>e</sub> =              | 48.60          |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        | K =                          | <b>8.1E-05 cm</b><br>1.6E-04 fee                  |                                              |                                                             | Q =<br>h <sub>e</sub> =       | 0.281<br>56.90 |                 |                                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        | K =                          | <b>1.1E-04 cm</b><br>2.1E-04 fee                  |                                              |                                                             | Trendline Slope               | 155.20         |                 |                                                                    |        |



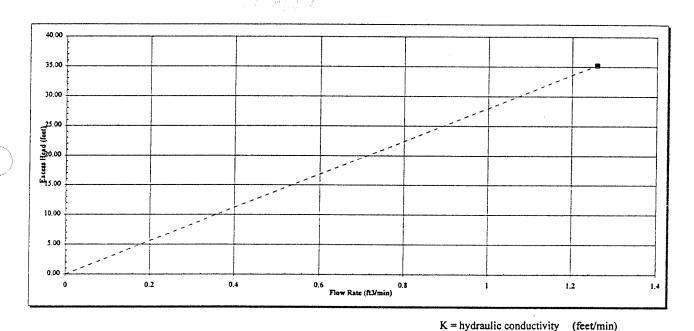
| 061.1075-694 |                                                  |                                                                        |                                          |                                                      |                                                              |                                           |            | rages                   | Average Q                        | (gaVmin)        |                    |           | 00.0               | 0.00    | 00.0    | 00.0    | 00.0  | 0.00         | 0.00    | 000            | 0.00       | 0.00           | 93 G    | 000           | 0.00   | 0.00   | 0.00         | 0.00    | <b>0</b> 0.0 | 000     | 08.0  | 000            | 0.00     | 00.0                                    |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------|-------------------------|----------------------------------|-----------------|--------------------|-----------|--------------------|---------|---------|---------|-------|--------------|---------|----------------|------------|----------------|---------|---------------|--------|--------|--------------|---------|--------------|---------|-------|----------------|----------|-----------------------------------------|
| ()           |                                                  |                                                                        |                                          |                                                      |                                                              |                                           |            | 5 Point Moving Averages | Δ time                           | (minutes)       |                    |           | 0.00               | 0.00    | 0.00    | 00.0    | 0.00  | 00.0         | 000     | 10.0           | 10.0-      | 0.03           | 5 7     | 10.0          | -0.15  | 01.0-  | 10.0-        | 8.0     | 0.10         | 0.05    | 60.0  | 0.08           | 0 02     | 0.04<br>0.19                            |
|              |                                                  |                                                                        |                                          | rval<br>Vertical Depth (A)                           | 19.99<br>29.95                                               | 29.60                                     |            | 5 Point                 | Applied Head                     | (ICCI OI WALEL) |                    |           | 15,44              | 17.11   | 11.44   | 11      | 11.44 | 11.44        | 11.11   | 18.61          | 18.44      | 24.61<br>24.45 | 11.0    | 18.42         | 18.40  | 76.81  | 18.36        | 97.11   | 1            | 18.40   | 18.42 | 18.44          | 14<br>14 | 18.46<br>18.51                          |
|              |                                                  |                                                                        | alculation:                              | iate                                                 | 20.00 Above<br>30.00 Below                                   | tom of interval (ft)                      |            | 71                      | Average Q                        | (R40 mm)        |                    | 00'0      | 0.00               | 0.00    | 00.0    | 0.00    | 0.00  | 0.00         | 0.00    | 0.00           | 00.0       | 00.0           | 0.00    | 0.00          | 0.00   | 0.00   | 00.0         | 00.0    | 0.00         | 0.00    | 00.00 | 0.00           | 000      | 00.0                                    |
|              |                                                  |                                                                        | <b>True vertical depth calculation</b> : | -                                                    | Above<br>Balow                                               | Vertical depth of bottom of interval (ft) |            | J Point Moving Averages | Δ time<br>(mina)                 |                 |                    | 0.00      | 0.00               | 000     | 0.00    | 0.00    | 8.0   | 00.0<br>00.0 | 0.00    | 0.00           | 10'n       | 0.02           | 0.01    | 10.0-         | 0.02   | 10.0   | 6 9<br>8     | 0.05    | 0.00         | 0.03    | 0.05  | <b>1</b> 0.0   | 10 U     | 0.02                                    |
|              |                                                  |                                                                        | -                                        | Depth (f)                                            | 01                                                           | 4.75                                      |            | J Point                 | Applied Head<br>(feet of water)  |                 |                    | 18.44     | 1 :<br>1 :         | 11      | 18.44   | 11.44   | 11    | 11.44        | 18.44   | 11<br>11<br>11 | 111        | 18.45          | 11.44   | 18.43         | 18.40  | (C11   | 51           | 16.31   | 101          | 18.40   | 18.42 | 11.45<br>11.45 | 18.46    | 18.46                                   |
|              |                                                  | itraddie packer<br>wahole                                              | ith calculation:                         | Vertical                                             | 10.00 Below                                                  | Vertical depth of top of laterval (A)     |            |                         |                                  |                 |                    |           |                    |         |         |         |       | 9            |         |                |            |                |         |               |        |        |              |         |              |         |       |                |          |                                         |
| Com          |                                                  | Test Type:<br>Constant head, Straddie packer<br>Gauge located downhole | True vertical depta calculation:         | Hole depth (A)<br>Above                              | Bclow                                                        | Vertical depth of                         |            |                         | Q<br>(gal/min)                   |                 |                    |           |                    |         |         |         |       |              |         |                |            |                |         |               |        |        |              |         |              |         |       |                |          |                                         |
|              |                                                  |                                                                        |                                          |                                                      |                                                              |                                           |            |                         | Applied Head<br>(feet of water)  | 16.44           | 11.44              | ;;<br>; ; | 11                 | 11.44   | 11      | 11.44   | 18.44 | 18.44        |         | 1145           | 18.45      | 91             | 144     | 6011          | 65.81  | 2011   | 16.81        |         |              | 14.41   | 18.43 | 11.41          |          | 18.46                                   |
|              |                                                  |                                                                        | inches<br>foot                           | feet below top of casing<br>feet below top of casing | feet<br>feet below top of casing<br>free below top of casing |                                           |            | -                       | Measured Head<br>(feet of water) | 10:0            | 0.00               | 000       | 10:0               | 000     | 10:0    | 0,00    | 0.00  | 00.00        | 000     | 10.0           | 10.0       | 10.0-          | 00.0    | <b>1</b> 0,0- | 2010-  | -0.12  | - 0.10       | 97 F    | 33           | 0.00    | 0,00  | 0.04           | 0.02     | 0.03                                    |
|              | rle/CSSA                                         |                                                                        | 3.78 ii<br>0.16 f                        |                                                      | 24.87 6<br>                                                  |                                           |            |                         | cimpsca time<br>(minutes)        | 0.00            | 90.0               | 91.0      | 05.0               | 0.36    | 15.0    | 0.60    | 0.72  | 0.75         | 0.96    | 1.02           | - 1<br>- 1 | 126            | 1.31    | 1.44          | 1.56   | 1.62   |              | 1.86    | 1.91         | 2.04    | 2.10  | 222            | 877      | <b>4</b> 0.7                            |
|              | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 218A<br>15<br>5-Nov-95                                                 |                                          | Tep<br>Bottom                                        | _                                                            |                                           | 8:02:28    | Flansed time            | (hours)                          | 0.00            | 0000               | 0.00      | 10.0               | 10:0    | 10.0    | 0.01    | 10:0  | 10.0         | 0.02    | 0.02           | 0.02       | 0.02           | 0.02    | 0.02          | 0.03   | 6. O   | 60.0<br>E0.0 | 0.03    | 0.03         | 0.03    | 0.04  |                | 100      | 5 A A A A A A A A A A A A A A A A A A A |
| 1000         | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date                                   | Borehole diameter<br>Borehole radius     | lest section location                                | Leagen of test interval<br>Gauge Depth<br>Static Water Level | General Lithology<br>Sandstone            | Start Time | Clock                   | Time                             | E:02:28         | 8:02:32<br>8:02:35 | 8.02.39   | 8 02:46<br>• 43:50 | 1.02.53 | 8:03:00 | 10:00:0 | 11.00 | 81 EO.8      | 8:03.26 | 601E018        | 1:03.40    | 1.03.44        | 1:03:51 | 45:E0:B       | 20-M-8 | 10.00° | 8:04:16      | 8:04:20 | 1:04.27      | 1.04.30 | 10434 | 1.04,45        | 8.04.48  |                                         |

211A15A CHA, Input Data


| OC1.1842-EHQ            |                                |               | Average Q       | (gal/min)     | 0.00    | 00.0          | <b>90</b> .0 | 80          | 0.00    | 0.00              | 00'00   | 0.00         | 0.00           | 0.0     |             | 00.0    | 00.0   | 0.00    | 0.00           | 0.00    | 0.00    | 0000    | 0.0     | 000     | 000     | 000     | 0.00    | 0.00         | 000     | 0.0          | 00.0    | 0.00               | 0.00    | 0.00         | 0.00    | 00.0    |          | 0.00          | 00.0    | 0.00    | 0.00   | 0.00    | 00'0         | 0.00         |
|-------------------------|--------------------------------|---------------|-----------------|---------------|---------|---------------|--------------|-------------|---------|-------------------|---------|--------------|----------------|---------|-------------|---------|--------|---------|----------------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|---------|--------------|---------|--------------------|---------|--------------|---------|---------|----------|---------------|---------|---------|--------|---------|--------------|--------------|
| $\langle \cdot \rangle$ |                                |               | Δ time          | (minutes)     | 1.05    | 16.0          | 76.0         | 170         | 02.0    | 0.48              | 0.49    | <b>1</b> 0.0 | 61.0           | 19      | 61.0        | E0.0-   | 0.05   | 0 02    | £0.0-          | 10.0    | 0.00    | 10:0-   | 0.02    | 10.0-   | 0.02    | 0.03    | 0.05    | <b>10</b> .0 | 0.03    | to:0-        | E0:0-   | £0'0-              | -0.07   | \$0.0-       | -0.01   | 5 7     | 5 7      | [0]0-         | £0,0-   | 0.01    | M) ()+ | 00.0    | 0.03         | H) ()        |
|                         | 5 Point Moving Averages        |               | Gauge Hea       | (feet of wate | 14.75   | 10.21         | 61.61        | 19.61       | 19.72   | 18.61             | 19.92   | 19.91        | 20.00<br>00.00 | 19.91   | 19.96       | 19.99   | 19.91  | 66.61   | 19.99          | 19.99   | 19.99   | 00.01   | 00 01   | 66.61   | 66,61   | 20.00   | 20.01   | 20.02        | 10.02   | 20.03        | 20.02   | 20.02              | 20.00   | 66.61        | 19.91   | 19.93   | 16.91    | 19.90         | 06:61   | 19.90   | 19.89  | 19.89   | 19.90        | <b>19.90</b> |
|                         | 5 Point Mov                    | Average       | verage Q        | (gat/min)     | 000     | 0.0           | 0.00         | 0.00        | 0'00    | 00.00             | 00.0    | 0.00         | 00.0           | 00.0    | 0.00        | 00.0    | 0.00   | 0.00    | 0.00           | 000     | 00.0    | 0.00    | 0.0     | 0.00    | 0.00    | 0.00    | 0000    | 000          | 0.00    | 0.00         | 0.00    | 0.00               | 00.0    | <b>10</b> 00 | 0.0     | 0.00    | 0.00     | 0:00          | 0.00    | 0.00    | 0.00   | 0.00    | <b>0</b> 070 | <b>20</b> .0 |
|                         |                                |               |                 | -0.02         | 0.45    | 0.93          | 0.04         | 0.04        | 86.9    | 0.26              | 11.0    | 81.0         | <b>60</b> .0-  | 0.09    | -0.05       | 0.05    | 0.02   | 8.0     | 10'0           | 0.0     | 0.02    | 10.0-   | 10.0    | 10:0    | 0.00    | 10:0    | 0.02    | 20.0         | -0.02   | 0.00         | 10.0-   | 8                  | 70.7    | 5 6 9        | -0.05   | -0.02   | -0.03    | <b>1</b> 0.07 | 0.0     | 10.0-   | 10:0   | 3       |              | 8.2          |
|                         | erages                         | Course Mand   | Cauge stead     | 12.65         | 16.11   | 52.61         | 19.56        | 19.59       | 12.61   | 19.01             | 20.01   | 20.01        | 20.00          | 26.61   | 19.91       | 19.97   | 66.61  | 00'07   | 66.61<br>66 61 | 66.61   | 66.61   | 66.61   | 66'61   | 66.61   | 19.99   | 20.00   | 20 02   | 20.03        | 20.04   | 20.03        | 20.03   | 10.02              | 10.07   | 19.97        | 19.94   | 19.93   | 16.61    | 16.91         | 06.61   | 06.6I   | 19.89  | 9191    | 01.01        |              |
|                         | <b>3 Point Moving Averages</b> | Average       |                 |               |         |               |              |             |         |                   |         |              |                |         |             |         |        |         |                |         |         |         |         |         |         |         |         |              |         |              |         |                    |         |              |         |         |          |               |         |         |        |         |              |              |
| * terror                |                                | 0             | gal/min)        |               |         |               |              |             |         |                   |         |              |                |         |             |         |        |         |                |         |         |         |         |         |         |         |         |              |         |              |         |                    |         |              |         |         |          |               |         |         |        |         |              |              |
|                         |                                | Applied Head  | (feet of water) | 18.642        | 11.647  | 19.526        | 19.579       | 690.61      | 519:61  | 19.879            | 20.05   | 20.108       | 19.86          | 770.07  | 279.91      | 666.61  | 19.987 | 20.003  | 166.61         | 19.974  | 966.61  | 166.61  | 18/61   | 10,000  | C64741  | 20.002  | 20.015  | 20.048       | 20.037  | 20.02        | 20.017  | 20,003             | 20.002  | 19.966       | 10.01   | 616.61  | 19.91    | 10 005        | 19 220  | 19.895  | 19.9   | 19.866  | 19.492       |              |
|                         |                                | Measured Head | (feet of water) | 0.213         | 0.212   | 1601          |              | 1111<br>111 | 151     | 1.444             | 1.615   | [19]         | 1.433          | 111     | 102.1       | 1.564   | 1.552  | 1.568   | 1.558          | 962.1   | 1361    | (0C.)   | 1.549   | 8251    | 1221    | 1.567   | 1.51    | [19]         | 1.602   | 765.1<br>192 | 1.582   | 1.568              | 1.567   | 165.1        | 1.502   | 1 444   | 1456     | 191           | 1.454   | 1.46    | 1.465  | 10/1    | 1.457        |              |
|                         | 8.02.28                        | Elapsed time  | (minutes)       | 2.64          | N. 7    | 7.10<br>11.10 | 2.94         | 30.6        | 3.12    | 3.18              | 0.10    | 90.2<br>98 c | 1.54           | 3.60    | <i>u</i> .c | 3.74    | 3.14   | 3.96    | 4.02           | ¥1.4    | 4.20    |         | 11      | 4.56    | 4.62    | 4.68    | 4.80    | 4.86         | 105     | 5.10         | 5.22    | 5.28               | 5.34    | 9 6          | 20°C    | 5.70    | 3.76     | 5.88          | 5.94    | 6.06    | 6.12   | 6.18    | 6.30         |              |
| en المجري<br>مع         | Start Time                     | me            | (hours)         | 0.044         | 2000    | 190.0         | 0.049        | 0.051       | 0.052   | 0.053             | 0.035   | 200<br>200   | 0.059          | 0.06    | 0.062       | 0.063   | 0.064  | 0.066   | 0.067          | 690.0   | 0.071   | 0.072   | 0.074   | 0.076   | 0.077   | 0,078   | 80.0    | 140.0        | 0.084   | 0.045        | 0.087   | 0.088              | 610.0   | (A) 0        | M(4)(0  | 0.095   | 9(4) ()  | 860.0         | 640.0   | 101.0   | 0.102  | CO 1 0  | C01'0        |              |
| Locemb                  |                                | Clock         | lime            | 00:00.5       | 8.05.14 | 1.05.21       | 8:05:24      | \$:05:32    | 8:05:35 | 96:50:8<br>7 - 24 | 1:05:50 | 8:05:57      | 00'90:8        | 8:06:04 | 11:90:1     | 8.06.15 | 1.00.1 | 8.06.26 | 87:00:8        | 1.06.40 | 8.06:44 | 8:06:47 | 1:06:54 | E.07.02 | 8.07.05 | 8:07:09 | 1.07.20 | 1:07:27      | 8:07:30 | 8:07:34      | 8.07.41 | 8:07:45<br>F-07:45 | M 07-56 | 1.07.59      | 8:01.06 | 01:20.2 | \$10R014 | 12.80.8       | 8:08:24 | B:01:32 | 00101  | 1.01.46 |              |              |

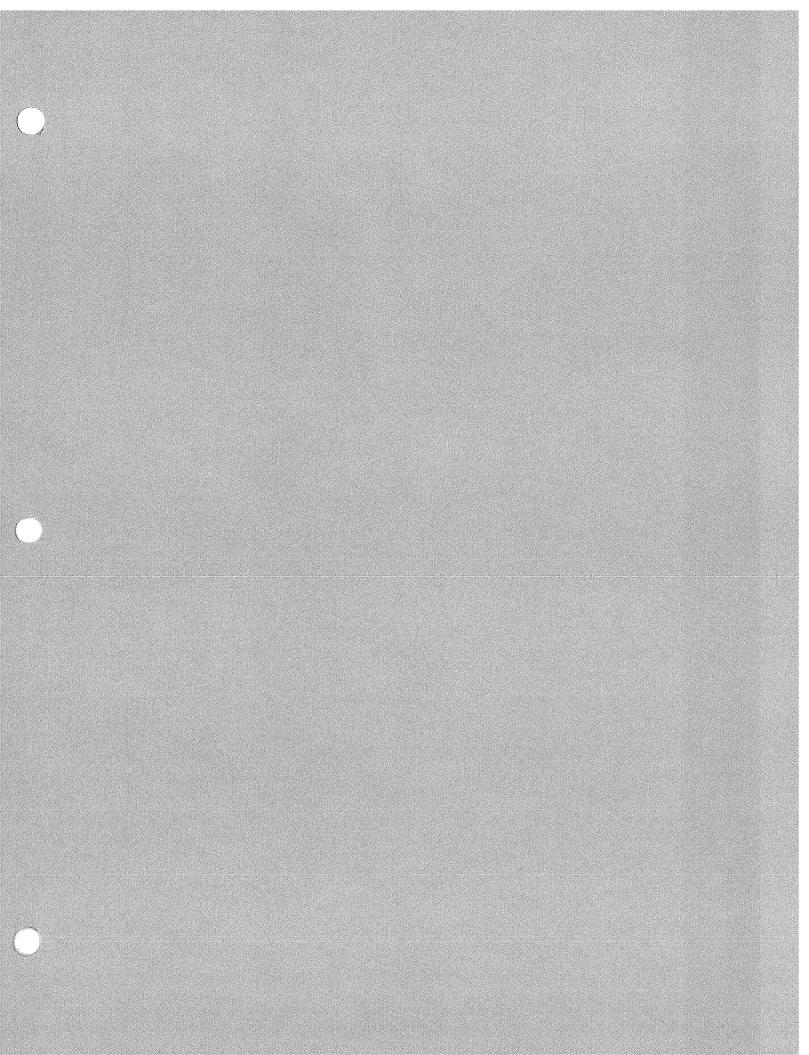
Gulder Associates

Page 2 of 2


213A15A C1IA, Input Data

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| - 35.21         | 9.400         |




Client Morrison-Maierle/CSSA Site Miner Flat Project No. 943-27691 Borehole 218A Interval Number 15 Plot data

Applied Head (feet of water) 35.21 Flow Rate (Q) (gal/min) 9.400 Flow Rate (Q) (ft<sup>3</sup>/min) 1.2568



|                                                  |                               | (                      |  |
|--------------------------------------------------|-------------------------------|------------------------|--|
|                                                  | Q = Flow rate                 | (ft <sup>3</sup> /min) |  |
| $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ | he = Applied head             | (feet)                 |  |
|                                                  | L = length of interval tested | (feet)                 |  |
|                                                  | r = borehole radius           | (feet)                 |  |
| Range of hydraulic conductivity                  |                               |                        |  |

| K = | 5.9E-04 cm/s     | Q =              | 1.257 | ft³/min |
|-----|------------------|------------------|-------|---------|
|     | 1.2E-03 feet/min | h <sub>e</sub> = | 35.21 | feet    |

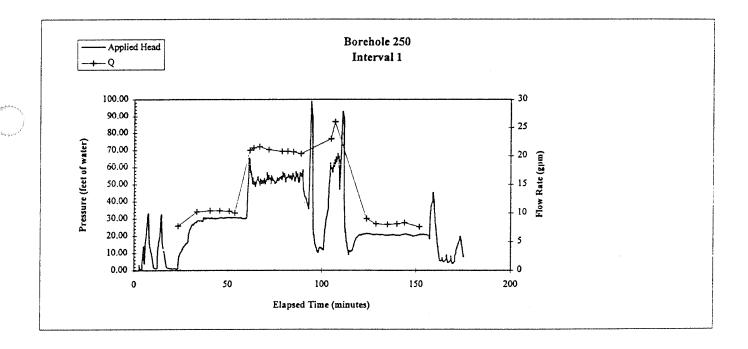


Packer Testing Results Borehole MF 250

| Interval # |                     | Interva                  | Interval Depth |             | Lithology |                  |          | Hvdraulic Conductivity | onductiv         | itv       |               |
|------------|---------------------|--------------------------|----------------|-------------|-----------|------------------|----------|------------------------|------------------|-----------|---------------|
|            | Ľ                   |                          |                |             | 8         |                  |          |                        |                  | £ • 1     |               |
|            | )                   | - top                    | bott           | lom         |           |                  | feetmin  |                        |                  | cm/sec    |               |
|            | (fbtc) <sup>1</sup> | (elevation) <sup>2</sup> | (fbtc)         | (elevation) |           | Low <sup>4</sup> | Hich     | High Regression        | Low <sup>4</sup> | Hioh      | Rourossinn    |
|            |                     |                          |                |             |           |                  |          | 0                      |                  | 0         | TANET CONTOUR |
| 7          | 134.08              | 5945.08                  | 159.44         | 5919.72     | Sandstone | 2.87E-03         | 2.35E-03 | 1 48F-03               | 1 466-03         | 1 206-03  | 1 505 04      |
| 6          | 161.08              | 5918.08                  | 186.44         | 5892.72     | Sandstone | 3.33E-03         | 3.97E-03 | 2.19E-03               | 1 695-03         | 2 07E-03  | 1 116-04      |
| 5          | 186.08              | 5893.08                  | 211.44         | 5867.72     | Sandstone | 5.11E-03         | 5.11E-03 | 1.06E-02               | 2 59F-03         | 2 50E-03  | 5 40E 03      |
| 4          | 211.08              | 5868.08                  | 236.44         | 5842.72     | Sandstone | 2 46F-03         | 2 69F-03 | 2 5 1E-02              | 1 755 02         | CO-71/017 | CO-304-C      |
| 3          | 239.08              | 5840.08                  | 264.44         | 5814 72     | Sandstone | 7 975-04         | 1 176 02 | CO-710-7               | C0-7671          | 1.3/E-U3  | 1.2/E-UJ      |
| 2          | 264.08              | 5815.08                  | 289.44         | 5789.72     | Sandstone | 1 376-03         | 1 086-02 | 1.045.03               | 4.U2E-U4         | 5./1E-04  | 6.39E-04      |
| -          | 289.08              | 5790.08                  | 314.44         | 5764.72     | Sandstone | 1 32E-03         | 1 98F-03 | 1.24E-03               | 0.72E-04         | 1.01E-03  | 9.86E-04      |
|            |                     |                          |                |             |           |                  |          |                        | N.141-04         | CU-310.1  | PU-364.4      |
|            |                     |                          |                |             |           |                  |          |                        |                  |           |               |
|            |                     |                          |                |             |           |                  |          |                        |                  |           |               |
|            |                     |                          |                |             |           |                  |          |                        |                  |           | ••••          |

<sup>1</sup> Feet below top of casing. <sup>2</sup> Feet above mean sea level

<sup>3</sup> Regression analysis does not include origin as a point. <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.


250

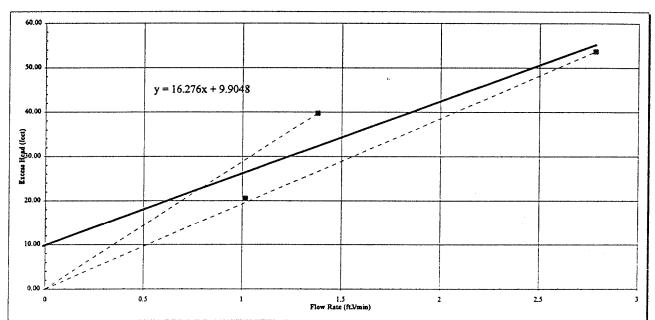
| 91-120-130 |                                                                                |                                                                                                                                                                                | ges<br>Averand                            | Average Q<br>(gal/min) |                         |                | 00.00<br>00.00       | 0.0      | 0.00         | 8.0      | 0.00              | 0.00     | 0.00              | 00.0<br>00.0          | 0.00              | 00.00          | 0.00                 | 0.0               | 000               | 0.00           | 0.00         | 0.00              | 8.0                  | <b>0</b> 00 | 00.0              | 0.00         | 00.0                       |  |
|------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|-------------------------|----------------|----------------------|----------|--------------|----------|-------------------|----------|-------------------|-----------------------|-------------------|----------------|----------------------|-------------------|-------------------|----------------|--------------|-------------------|----------------------|-------------|-------------------|--------------|----------------------------|--|
|            |                                                                                |                                                                                                                                                                                | 5 Point Moving Averages<br>Head A time Av | d time<br>(minutes)    |                         |                | 00.0                 | 0.00     | 00.0         | 10.0-    | 0.00              | 0.00     | -0.02             | 10.0                  | 10.0-             | 0.00           | <b>1</b> 0'0-        | 0.0               | 10.0              | CU 0           | <b>0</b> .04 | 0.02              | 000                  | 10.0-       | 10.0              | 0.00         | M0.0-                      |  |
|            |                                                                                | terval<br>Vertical Depth (N)<br>Above 309.91<br>Balow 316.51<br>d (N) 314.35                                                                                                   | 5 Point A<br>Applied Head                 | (feet of water)        |                         |                | 899                  | -0.03    | 10 P         | 10.0     | £0.0 <del>.</del> | -0.03    | 8 8<br>9 9        | 5 70 P                | -0.05             | -0.05          | -0.0X                | <b>9</b> 2<br>7 7 | 8.9               | -0.05          | <b>1</b> 2.0 | <b>9</b> .0       |                      | 3           | -0.03             | -0.03        | <b>3</b> .9<br><b>3</b> .9 |  |
|            |                                                                                | ottom of in<br>310.00<br>316.60<br>a of interva                                                                                                                                | ges<br>Average ()                         | (gal/min)              |                         | 0.00           | 0000                 | 00'0     | 00.0<br>00.0 | 0.00     | 0.00              | 0.00     | 0,00              | 0.00                  | 0.00              | 0.00           | 000                  | 000               | 00.0              | 0.00           | 0.00         | 0.0               | 00.0                 | 0.00        | 0.00              | 0.00         | 01.0                       |  |
|            |                                                                                | Hole depth (n)<br>Abone<br>Below<br>Vertical depth of b                                                                                                                        | 3 Point Moving Averages<br>Head A time A  | (mins)                 |                         | 80.0           | 0.0                  | 0.00     | 0<br>0<br>0  | 10.01    | 10.0-             | 0.01     | 3 9               | 0.0                   | -0.01             | -0.04          | 10.0                 | 10.0-             | 10:0              | 10:0           | 0.02         | 8.0               | 8                    | 10.0        | -0.0 <del>3</del> | 0.00         | 0.0<br>10.0                |  |
|            |                                                                                | i:<br>Erral<br>Vertical Depta (ft)<br>Hove 2393<br>Below 249,92<br>Below 219,00<br>Ve                                                                                          | 3 Point ]<br>Applied Head                 | (feet of water)        |                         | -0.0-<br>20.0- | 6.03                 | -0.03    | -0.0<br>10.0 | -0.03    | -0.04<br>         | 8 2      | 3                 | -0.04                 | 20.05             | -0.02<br>20.02 | 8 8                  | 90.0              | -0.0 <del>6</del> | -0.05          | <b>1</b> 0.0 |                   | 10.0-                | -0.03       | <b>1</b> 0.0-     | <b>1</b> 0.0 | <b>3</b> . 9               |  |
|            | Test Type:<br>Coastant head, Straddie packer<br>Gauge loeated downhole         |                                                                                                                                                                                | ð                                         |                        |                         |                |                      |          |              |          |                   |          |                   |                       |                   |                |                      |                   |                   |                |              |                   |                      |             |                   |              | si,                        |  |
|            | Terl'<br>Gaug                                                                  | True v<br>Hok d<br>Above<br>Below<br>Vertici                                                                                                                                   | Applied Head                              | (feet of water)        |                         | 60.0-          |                      | [0]0-    |              |          | (0)<br>20         |          |                   |                       | (0)<br>910<br>910 |                |                      |                   |                   | <b>2</b> 6.6   |              |                   |                      |             |                   | 5            | (0.0-                      |  |
|            |                                                                                | inches<br>feat<br>feat below up of cuaing<br>feat below up of cuaing<br>feat below up of cuaing<br>feat below up of cuaing                                                     | Measured Head                             | (feet of water)        | -0.03<br>-0.13<br>-0.13 | 10'D-          | 60.07<br>50.07       | 6 G G    | £0.0-        | CO-0-    |                   | 0.03     | £0.0 <del>.</del> | <b>20.0</b>           |                   | -0.06          | 90) ( <del>) -</del> | -0.07             | -0.0 <u>7</u>     | 90.0-<br>10.0- | 10.0-        | £0.0 <del>-</del> | £0'0-                | -0.03<br>   | 50'0-<br>51'0     | 8 9          | (0.q-                      |  |
|            | rle/CSSA                                                                       | 3.78<br>0.16<br>2.89,08<br>314,44<br>314,44<br>25,36<br>1.158,24<br>1.158,24                                                                                                   | Elapsed time                              | (minutes)              | 0.00<br>0.00<br>0.00    | 0.16           | 0C.0<br>AC 0         | 0.42     | 0.66         | 0.72     | 0.84              | 0.84     | 0.96              | 1.02                  | 1.86              | 1.92           | 161                  | 161               | 2.04              | 5 10           | 2.16         | 222               | 122                  | 2.28        | 477<br>72         | 2.40         | 2.46                       |  |
|            | Morrison-Malerle/CSSA<br>Milaer Flat<br>943-27691<br>250<br>1<br>1<br>1-Nov-95 | Tep<br>Bottom                                                                                                                                                                  | e                                         | (hours)                | 800<br>900<br>900       | 0.00           | 10:0                 | 0.01     | 10.0         | 10.0     | 10.0              | 0.01     | 0.02              | 0.02                  | 60.0              | 0.03           | 0.03                 | 0.03              | 0.0               | 10.0           | 0.04         | <b>1</b> 0'0      | 0.04<br>2.02         | 40 D        | 100               | 0.04         | 6.04                       |  |
| Jourse     | Client<br>Site<br>Project No.<br>Borehole<br>Teat Number<br>Teat Date          | Borchole diameter<br>Borchole radius<br>Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level<br>General Lithology<br>Stard theo<br>Start Theo | Clock                                     | Time                   | 15.06:24                | 15,06,31       | 15.06.31<br>15.06.42 | 15.06.45 | 15.07.00     | 13.07.07 | 15.07.10          | 15.07:10 | 15:07:13          | 15.0.cl<br>15.07.0.cl | 15:04:12          | 15:08:15       | 13.01.19             | 13:08:19          | 15.06.22          | 15.08.26       | 15.08.30     | 15.08.33          | 15.08.33<br>14 AP-37 | 15.00-00    | 15.01.40          | 13.08.44     | 15.00.41                   |  |

Golder Associates

25001A CHA, Input Data

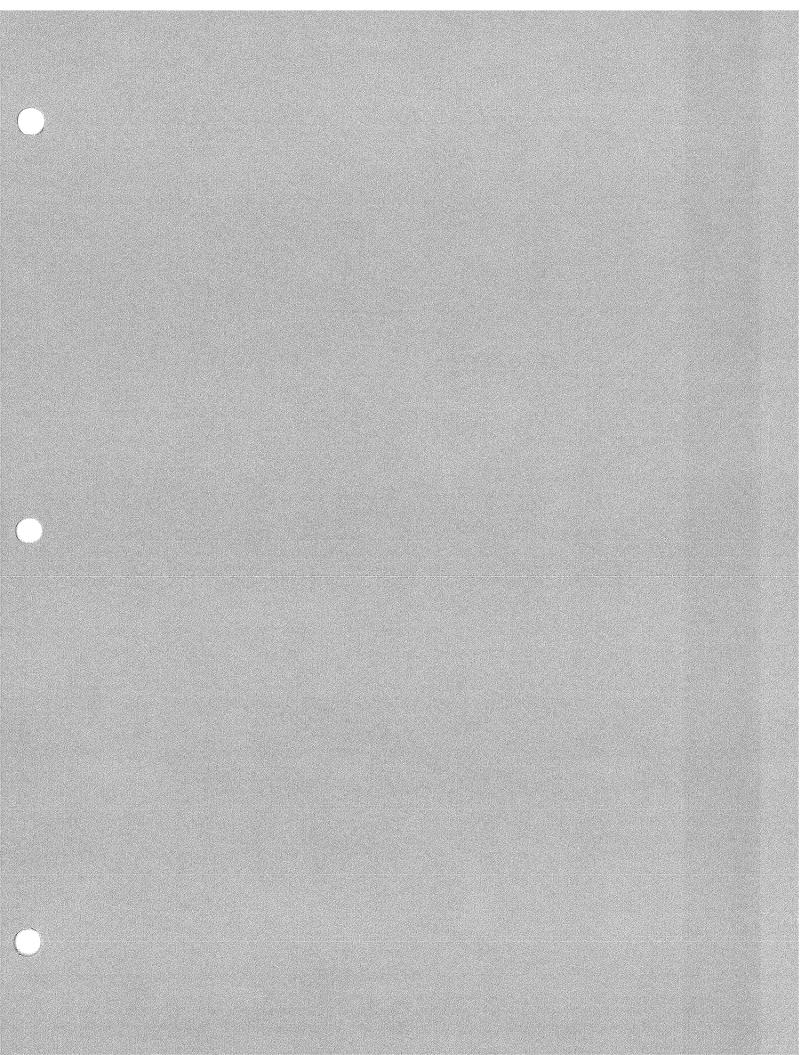
| Plot data used  | in analysis     |  |  |  |  |  |  |  |  |
|-----------------|-----------------|--|--|--|--|--|--|--|--|
| Applied Head    | Flow Rate (Q)   |  |  |  |  |  |  |  |  |
| (feet of water) | (gal/min)       |  |  |  |  |  |  |  |  |
| 39.74           | 10.300          |  |  |  |  |  |  |  |  |
| 53.65<br>20.54  | 20.800<br>7.600 |  |  |  |  |  |  |  |  |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

250 Borehole Interval Number

Plot data


1

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |  |  |  |  |  |
|-----------------|---------------|------------------------|--|--|--|--|--|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |  |  |  |  |  |
| 39.74           | 10.300        | 1.3771                 |  |  |  |  |  |
| 53.65           | 20.800        | 2.7810                 |  |  |  |  |  |
| 20.54           | 7.600         | 1.0161                 |  |  |  |  |  |



| K = 1/(.   | 2πL) x (Q/h <sub>e</sub> ) x in (L/r)   | K = hydra $Q = Flow$ $he = Appl$ $L = length$ $r = boreho$ | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |                              |  |
|------------|-----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|--|
| Range of l | hydraulic conductivity                  |                                                            |                                                                    |                              |  |
| K =        | 6.7E-04 cm/s<br>1.3E-03 feet/min        | Q =<br>h <sub>e</sub> =                                    | 1.654<br>39.74                                                     | ft <sup>3</sup> /min<br>feet |  |
| K =        | 1.0E-03 cm/s<br>2.0E-03 feet/min        | Q =<br>h <sub>e</sub> =                                    | 3.339<br>53.65                                                     | ft <sup>3</sup> /min<br>feet |  |
| K =        | <b>9.9E-04 cm/s</b><br>2.0E-03 feet/min | Trendline Slope                                            | 16.28                                                              |                              |  |

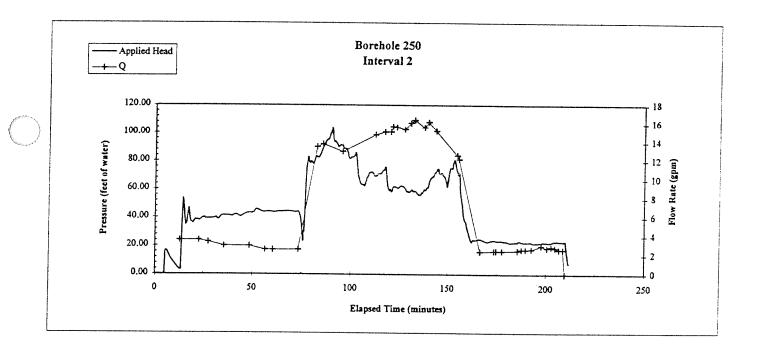
.



|  | v top of casing         v top of casing | inchea<br>feet<br>feet<br>feet<br>feet<br>feet below top of caning<br>feet of water)<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>00 | inchea<br>feet<br>feet below top of casing<br>feet of water)<br>(feet of water)<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>00 |  |  | Test Type:<br>Constant band, Straddle packer<br>Gauge located dewrhole | True vertical depth calculation:     Bottom of interval       Top of interval     Bottom of interval       Hole depth (ft)     Vertical Depth (ft)       Above     230.00       Above     230.00       Above     270.00       Balow     249.91       Balow     249.92       Balow     249.92       Balow     240.00       Balow     249.92       Balow     240.01       Vertical depth of top of interval (ft)     264.01 |  | Q Applied Head A time Average Q Applied (gal/min) (feet of (mina)) (feet of |  |  |  | 0.01 0.00 0.01 0.00<br>0.01 0.00 0.01 0.00 |  |  |  |  |  | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 |  |  | ····································· | 「「「「「「「」」」)<br>- 1 0 0 0 013 0.1 0.0 013 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 |  |  |  |  | 014 010 000 014 - 001 |  |  |  |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------|--|--|--|--------------------------------------------|--|--|--|--|--|----------------------------------------|--|--|---------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|-----------------------|--|--|--|
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------|--|--|--|--------------------------------------------|--|--|--|--|--|----------------------------------------|--|--|---------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|-----------------------|--|--|--|

061.1675-694

(


-----

Goldor Associator

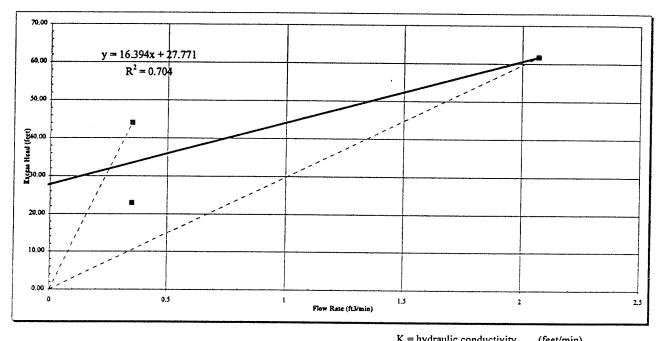
## 25002A CHA, Input Data

## Plot data used in analysis

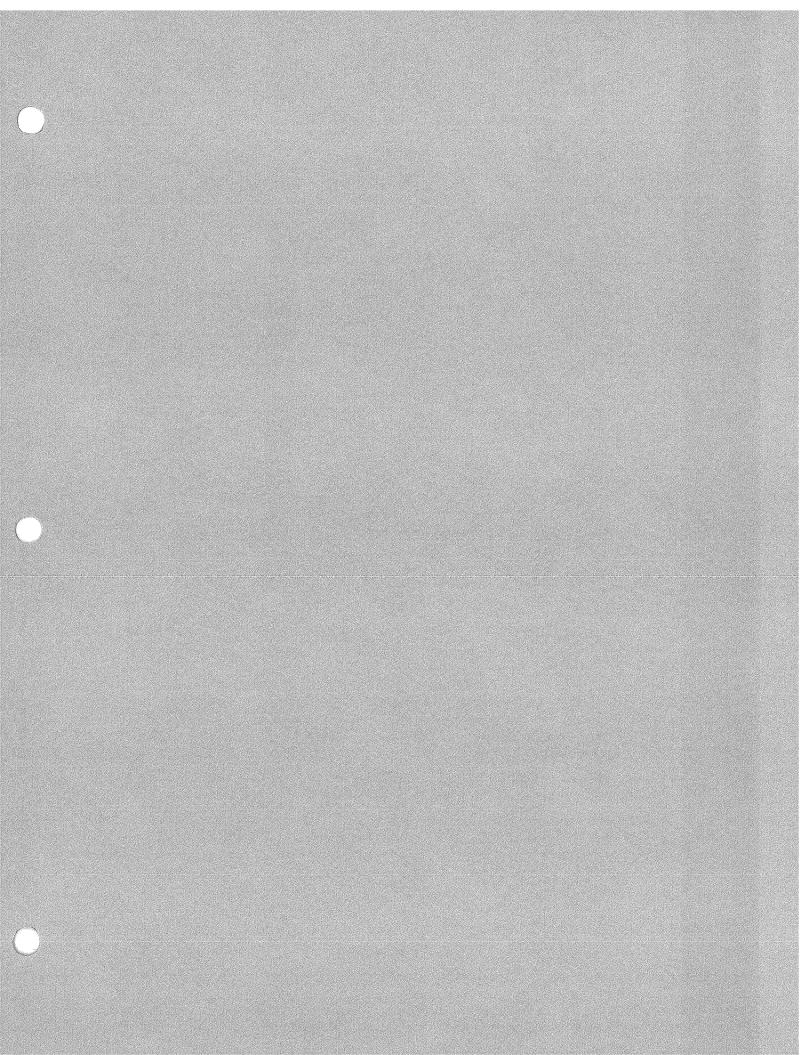
| Applied Head    | Flow Rate (Q)   |
|-----------------|-----------------|
| (feet of water) | (gal/min)       |
| 44.03           | 2.600           |
| 61.68<br>22.91  | 15.470<br>2.600 |



| Ì          | Client      | Morrison-Maierle/CSSA |
|------------|-------------|-----------------------|
| the second | Site        | Miner Flat            |
|            | Project No. | 943-27691             |


Borehole 250 Interval Number

Plot data


2

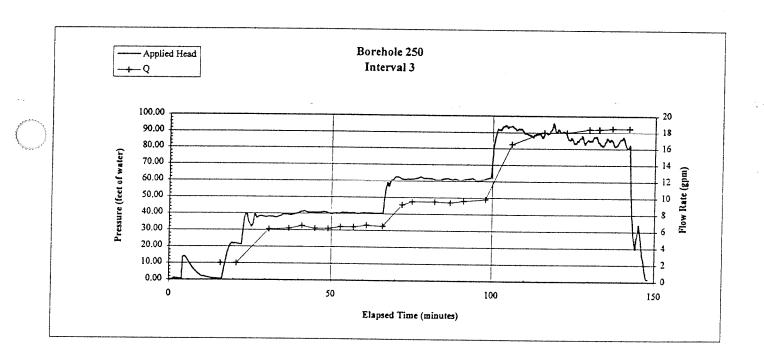
| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 44.03           | 2,600         |
| 61.68           | 15.470        |
| 22.91           | 2,600         |

Flow Rate (Q) (ft<sup>3</sup>/min) 0.3476 2.0683 0.3476



| K = 1/(  | /2πL) x (Q/h <sub>e</sub> ) x ln (L/r)  | K = hydra $Q = Flow$ $he = Appl$ $L = lengtt$ $r = boreho$ | rate<br>lied head<br>1 of interv |                                           | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|-----------------------------------------|------------------------------------------------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                  |                                                            |                                  |                                           |                                                                    |
| K =      | 6.7E-04 cm/s<br>1.3E-03 feet/min        | Q =<br>h <sub>e</sub> =                                    | 1.654<br>39.74                   | ft <sup>3</sup> /min<br>feet              |                                                                    |
| K =      | 1.0E-03 cm/s<br>2.0E-03 feet/min        | Q =<br>h <sub>e</sub> =                                    | 3.339<br>53.65                   | ft <sup>3</sup> /min<br>f <del>ce</del> t |                                                                    |
| K =      | <b>9.9E-04 cm/s</b><br>1.9E-03 feet/min | Trendline Slope                                            | 16.39                            |                                           |                                                                    |




| 941-2791,130 |                                                  |                                                                        |                                                                                                                               |                                          | 8                       | Average Q                        | (gaVmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              | 00.0       | 0.0                  | 0.00     | 0.00         | 0.00         | 0.0        | 0.0      | 0.00        | 00.0     | 0.0         | 0.00       | 0.00     | 000      | 0.00         | 0.00     | 0.00     | 0.00     | 000      | 0010     | <b>8</b> .0 | 00.0         |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------|----------------------|----------|--------------|--------------|------------|----------|-------------|----------|-------------|------------|----------|----------|--------------|----------|----------|----------|----------|----------|-------------|--------------|
|              |                                                  |                                                                        |                                                                                                                               |                                          | 5 Point Moving Averages | Δ time ,                         | (minutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              | 00)<br>100 | 11.0                 | 0.17     | 91.0<br>67.0 | 0.15         | 0.07       | -0.06    | <b>10.0</b> | 0.17     | 0.76        | 0.89       | 0.65     | 0.07     | -0.0-        | 11.0-    | -0.12    | 0.12     | -0.12    | 8 C      | 1 25        | 20           |
|              |                                                  |                                                                        | terval<br>Vertical Depth (h)<br>Above 239.93<br>Below 269.92                                                                  | 76.191                                   | 5 Point M               | Applied Head<br>(feet of water)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              | 10'0       | 0.03                 | 0.07     | 0.15         | 0.20         | 0.24       | 0.24     | <b>П</b>    | 870      | 0.52        | 0.70       | 0.88     | 1.04     | 1.05         | 1.03     | 1.01     | 16:0     | 56 D     | 06.0     | 0.01        | 0.87         |
|              |                                                  |                                                                        | Bottom of Interval<br>Vertica<br>260.00 Above<br>270.00 Bolow                                                                 | Vertical depth of bottom of laterval (f) | gcı                     | Average ()<br>(gal/min)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 0.00         | 00.0       | 0.00                 | 0000     | 0.00         | 00.00        | 0.0        | 0.00     | 00.0        | 0.00     | 0.00        | 0000       | 0.00     | 0.00     | 0.00         | 00.0     | 00.0     | 0.0      | 000      | 0.00     | 0.00        | 0.00         |
|              |                                                  |                                                                        | Hole depth (ft)<br>Abova<br>Balow                                                                                             | ertical depth of b                       | 3 Point Moving Averages | Δ tíme<br>(mins)                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 00.0<br>00.0 | 0.03       | 10.0                 | 015      | 0.08         | 0.04<br>0.04 | 0.00       | 0.0      | <b>8</b> 9  | 0.23     | 69.0        | <b>X</b> 2 | 0.12     | 0.02     | <b>10</b> .0 | 83       | 10 YE    | 50 0     | -0.04    | 10.0-    | 90.0-       | <b>3</b> 3.0 |
|              |                                                  |                                                                        | a:<br>erval<br>Vertical Depth ((t) H<br>Above 2299<br>Bolow 21999                                                             | V 10.952                                 | 3 Point                 | Applied Head<br>(feet of water)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 00.0         | 10.0       | 0.02                 | 0.10     | 0.15         | 0.23         | 0.25       | 0.25     | 0.21        | 0.27     | 0.49        | 0.96       | 1.03     | 1.07     | 90 T         | 5.9      | 0.98     | 2.0      | 0.92     | 0.90     | 0.85        | 0.86         |
|              |                                                  | addle packer<br>abole :                                                | calculation:<br>Top of laterval<br>Vertica<br>230.00 Above<br>240.00 Bolow                                                    | p of interval (fi)                       |                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |            |                      | 14       |              |              |            |          |             |          |             |            | 1.18     |          |              |          | -        |          |          |          | ,2          | e            |
|              |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation:<br>Top ef inter<br>Nove 240th (ft) 240,00 A<br>Above 240,00 B                                | Verlical depth of top of interval (ft)   |                         | Q<br>(gal/min)                   | <ul> <li>P. P. Manual</li> <li>P. Man</li></ul> |              |              |            |                      |          |              |              |            |          |             |          |             |            |          |          |              |          |          |          |          |          |             |              |
|              |                                                  |                                                                        | F                                                                                                                             | 2                                        |                         | Applied Head<br>(feet of water)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.0<br>00.0 | 00.0         | 10.0       |                      |          | 810          |              | 0.26       |          |             | 0.17     |             |            |          | 10.1     |              |          | 0.96     | 96.0     | 160      | R        |             | }            |
|              |                                                  |                                                                        | inchea<br>feat<br>feat below top of casing<br>feat below top of casing<br>feat<br>eat below top of casing                     | red below top of caring                  |                         | Mcasured Head<br>(feet of water) | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00         | 0.00         | 0.02       | 0.00                 | 010      | 0.18         | 0.26         | 470<br>270 | 0.26     | 0.20        |          | 0.36        | 0.96       | 901      | 1.08     | 1.03         |          | 980      | 0.96     | 14.0     | 8.0      | 0.05        |              |
|              | erle/CSSA                                        |                                                                        | 3.78<br>0.16<br>239.08<br>264.44<br>151.36<br>161.00                                                                          |                                          |                         | Elapsed time<br>(minutes)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 0.18         |            | 0.42                 |          |              | 0.78         |            | 1.02     | 1.20        | 1.26     | <b>1</b> 51 | ¥.         | 1.62     | 1.68     | 1.80         | 1.86     | 1.98     | 5 ID     | 1 11     | 2.34     | 2.40        |              |
|              | Morrlson-Maleric/CSSA<br>Miner Flat<br>943-27691 | 250<br>3<br>12-Nov-95                                                  | Tep                                                                                                                           |                                          | 11:24,09                | Elapsed time<br>(hours)          | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00'0         | 0.0          | 10.0       | 0.01                 |          | 0.01         | 100          | 0.02       | 0.02     | 0.02        | 0.02     | 0.02        | 0.02       | 0.0      | £0.0     | 0.0          | 60.0     | 0.03     | 10.0     | 10.0     | 0.04     | 0.0         |              |
| Tisur        | Clicat<br>Site<br>Project No.                    | Borebole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radiua<br>Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level | General Lithology<br>Sandstone           | Stari Time              | Clock<br>Time                    | 11:24:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11:24:16     | 11.24.27     | 11.24.31   | 11:24:34<br>11:24:41 | 11:24:45 | 11:24:52     | 11.24.59     | 11.25.07   | 11:25:10 | 11:23:21    | 11:23:25 | 11:25:32    | 11:25:40   | 11:25:46 | 11:25:50 | 11.25:57     | 10:07:11 | 11.26.11 | 11:26:15 | 11:26.22 | 11:26.29 | 11:26:33    |              |

**Goldor Associatos** 

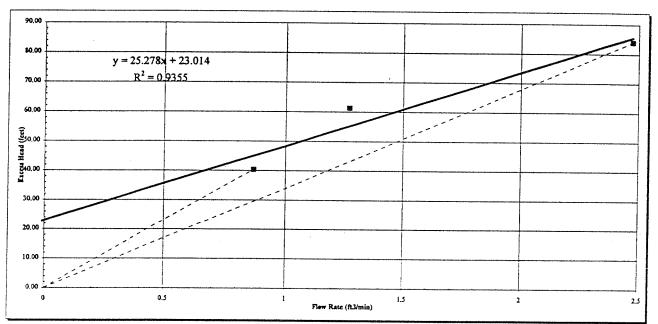
25003A CILA, Input Data

## Plot data used in analysis

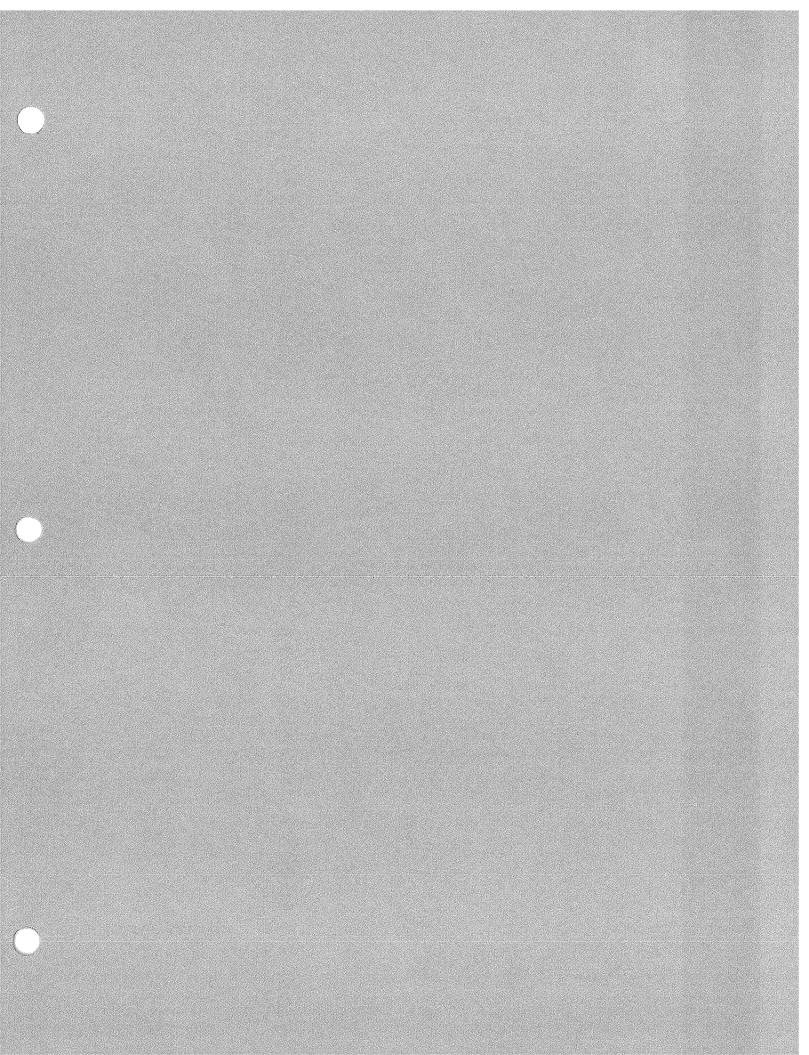
| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 40.37           | 6.500         |
| 61.27<br>84.00  | 9.500         |



| Ż | Client      | Morrison-Maierle/CSSA |
|---|-------------|-----------------------|
|   | Site        | Miner Flat            |
|   | Project No. | 943-27691             |
|   |             |                       |


Borehole Interval Number

Plot data


250

3

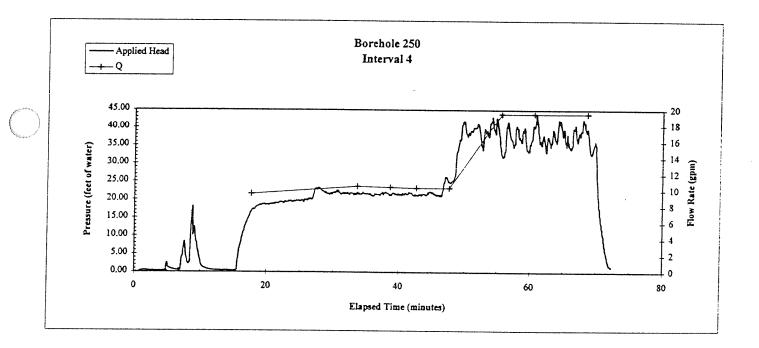
| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 40.37           | 6.500         | 0.36905                |
| 61.27           | 9.500         | 1.27015                |
| 84,00           | 18.500        | 2,47345                |



| K = 1/(  | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | Q = Flow<br>he = App<br>L = lengt | aulic cond<br>v rate<br>lied head<br>h of interv<br>ole radius | •                            | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|-----------------------------------------|-----------------------------------|----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                  |                                   |                                                                |                              |                                                                    |
| K =      | 4.0E-04 cm/s<br>7.9E-04 feet/min        | Q =<br>h <sub>e</sub> =           | 1.525<br>61.27                                                 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 5.7E-04 cm/s<br>1.1E-03 feet/min        | Q =<br>h <sub>e</sub> =           | 2.970<br>84.00                                                 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | <b>6.4E-04 cm/s</b><br>1.3E-03 feet/min | Trendline Slope                   | 25.28                                                          |                              |                                                                    |



| 961.1672-616                                                                    |                                                  |                                                                         |                                                                                                                                  | ŋ                                            | Average Q<br>(gal/min)           | Ì                    |                  | 0.00                 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 00.0                 | 00.00    | 0000                 | 0.0     | 0.00         | 0.00          | 000          | 0.00     | 0.00     |          | 0.00     | 00.00      | 0.00              | 00.0           | 0.0                                             | 0.00         | 0.00         | 00.00        |
|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------|------------------|----------------------|----------------------------------------------------------------------------|----------------------|----------|----------------------|---------|--------------|---------------|--------------|----------|----------|----------|----------|------------|-------------------|----------------|-------------------------------------------------|--------------|--------------|--------------|
| ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |                                                  |                                                                         |                                                                                                                                  | 5 Point Moving Averages                      | Δ time<br>(minutcs)              |                      |                  | 0.02                 | 0.03                                                                       | 20.0-<br>10.0-       | 0.00     | 0.19<br>0.10         | 0.34    | 0.33         | 0.16<br>-0.04 | 0.13         | 0.12     | 0.12     | -0 07    | -0.05    | -0.06      | 0.10              | /0.0-<br>90.0- | 90.0-<br>90.0-                                  | 10.0-        | <b>N</b> . 0 | 0.00         |
|                                                                                 |                                                  |                                                                         | terval<br>Vertical Depth (ft)<br>Above 229.94<br>Below 239.93<br>I (ft) 236.37                                                   | 5 Point P                                    | Applied Head<br>(feet of water)  |                      |                  | 0.03                 | <b>10</b> 0                                                                | 0.03<br>0.03         | 0.03     | 0.06<br>0.15         | 0.23    | 0.30         | 0.4<br>14.0   | 0.41         | 0.43     | 0.46     | 0.49     | 0.48     | 0.46       | <b>1</b> -0       | 190            | 6.0                                             | 0.38         | 16.0         | 76.0<br>76.0 |
|                                                                                 |                                                  |                                                                         | Bottom of laterval<br>Vertical<br>230.00 Above<br>240.00 Bebw                                                                    | T                                            | Average Q<br>(gal/min)           |                      | 0.00             | 000<br>000           | 00.0                                                                       | 0.00                 | 00.0     | 0000<br>0000         | 0.00    | 00.0         | 0.00          | 0.00         | 0.00     | 00.0     | 0.00     | 00.00    | 00'0       | 0.0               | 000            | 0.00                                            | 0.00         | 0.00         | 0.0          |
|                                                                                 |                                                  |                                                                         | Boltom of laterva<br>Hole depth (ft) Verti<br>Abova 230.00 Abo<br>Below 240.00 Belo<br>Vertical depth of bottom of laterval (ft) | 3 Point Moving Averages                      | Δ time<br>(mins)                 |                      | -0.02            | 90 10<br>10          | 0.00                                                                       | 10.0-                | 0.00     | 61.0<br>0.19         | 0.45    | 0.16<br>51.0 | 000           | 0.06         | 61.0     | -0.02    | 0.0      | 0.00     | 0.02       | 6 F               | 0.02           | 10:0-                                           | 10.0         | 0.0          | 8.0<br>8.0   |
|                                                                                 |                                                  |                                                                         | t:<br>Frval<br>Above 2003.95<br>Below 213.94<br>Below 213.94<br>Alor 211.03 Ve                                                   | Poir                                         | Applied Head<br>(feet of water)  |                      | 0.02             | 0.03                 | <b>90.0</b>                                                                | 0.02                 | 0.02     | 0.09                 | 52.0    | 0.36         | 76,0          | 66.0         | 0.43     | 0.49     | 0.49     | 0.49     | 0.47       | 0.42              | 0.41           | 60.0                                            | 9C.0<br>TE 0 | 75.0         | 7E.0         |
|                                                                                 |                                                  | addie packer<br>mhole                                                   | calculatioa:<br>Top of laterval<br>Vertical<br>210.00 Above<br>220.00 Below<br>p of laterval (ft)                                |                                              |                                  |                      |                  |                      |                                                                            |                      |          |                      |         |              |               |              |          |          |          |          |            | е <sup>н</sup> 1. |                | -1.<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | lar<br>Mir   |              |              |
| $\left(\begin{array}{c} \\ \end{array}\right)$                                  |                                                  | Teil Type:<br>Constant head, Straddio pairker<br>Gauge localed downholo | True vertical depth calculation:<br>Top of laterval<br>Hoke depth (ft) 210.00 Abuv<br>Bow 220.00 Bulow<br>Bow 7100 Datow         |                                              | Q<br>(gal/min)                   |                      | - <del>1</del> 2 |                      |                                                                            |                      |          |                      |         |              |               |              |          |          |          |          |            |                   |                |                                                 |              |              |              |
|                                                                                 |                                                  |                                                                         |                                                                                                                                  |                                              | Applied Head<br>(fect of water)  | 0.04                 | 10.0             | 0.0                  | 10.0<br>10.0                                                               | 0.03                 | 10.0-    | N0.0                 | 0.21    | 6.0          | 76.0          | 0.07<br>51.0 | 0.0      | 0.49     |          | 0.49     |            |                   |                |                                                 | 0.37         |              | 16.0         |
|                                                                                 |                                                  |                                                                         | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing   |                                              | Measured Head<br>(feet of water) | N) ()                | 2.5              | <b>10.0</b>          | 10.0<br>10.0                                                               | 0.0                  | 10.0     | 0.0                  | 0.21    |              | 0.37          | 0.37         |          |          | 610      | 0.49     | <b>1</b> 0 | 0.43              | 0.38           | 0.41                                            | 0.37         | 037          | 0.37         |
|                                                                                 | ie/CSSA                                          |                                                                         | 3.76 inch<br>0.16 feet<br>211.08 feet<br>23.644 feet<br>25.36 feet<br>153.00 feet<br>138.29 feet                                 |                                              | Elapsed time<br>(minutes)        | 00.0<br>90.0         | 0.12             | 0.30                 | 0.36<br>0.42                                                               | 0.54                 | 0.72     | 0.78                 | 0.95    | 1.02         | 11            | 1.26         |          |          | 1.36     | 1.68     | 1.80       | 1.16              | 161            | 2.16                                            |              |              | 46.5         |
|                                                                                 | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250<br>4<br>12-Nov-95                                                   | Bottem                                                                                                                           | 14:12,24                                     | Elapsed time  <br>(hours)        | 0.00                 | 00.0             | 10.0                 | 100                                                                        | 10.0                 | 10'0     | 10.0                 | 0,02    | 0.02         | 0.02          | 0.02         |          | 0.02     | 0.03     |          | 0.0        |                   | 0.03           |                                                 | 10.0         |              | M) ()        |
| 130%                                                                            | Client<br>Site<br>Project No.                    | Borehole<br>Test Number<br>Test Date                                    | Borchole diameter<br>Borchole radius<br>Test acction location<br>Length of test interval<br>Gauge Depth<br>Static Water Level    | Geaeral Lithology<br>Sandstone<br>Stari Time | Clock<br>Time                    | 14:12:24<br>14:12:28 | 16.1231          | 14-12-42<br>11-11-11 | 14:12:40<br>14:12:49                                                       | 14:12:56<br>14:13:00 | 14.13.07 | 14:13:11<br>14:13:14 | H-13.22 | 14:13:25     | 14,13:32      | 14:13:40     | 14:13:47 | 14:13:50 | 14.14.01 | 14:14:05 | 14:14:12   | 14:14:16          | 14:14:22       | 14:14:30                                        | 14:14:37     | 14:14:41     | 14.14.44     |


Goldor Associates

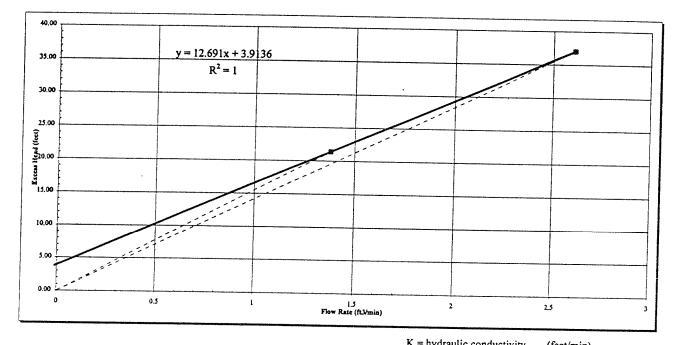
23004A CHA, Input Data

# 061.190-040

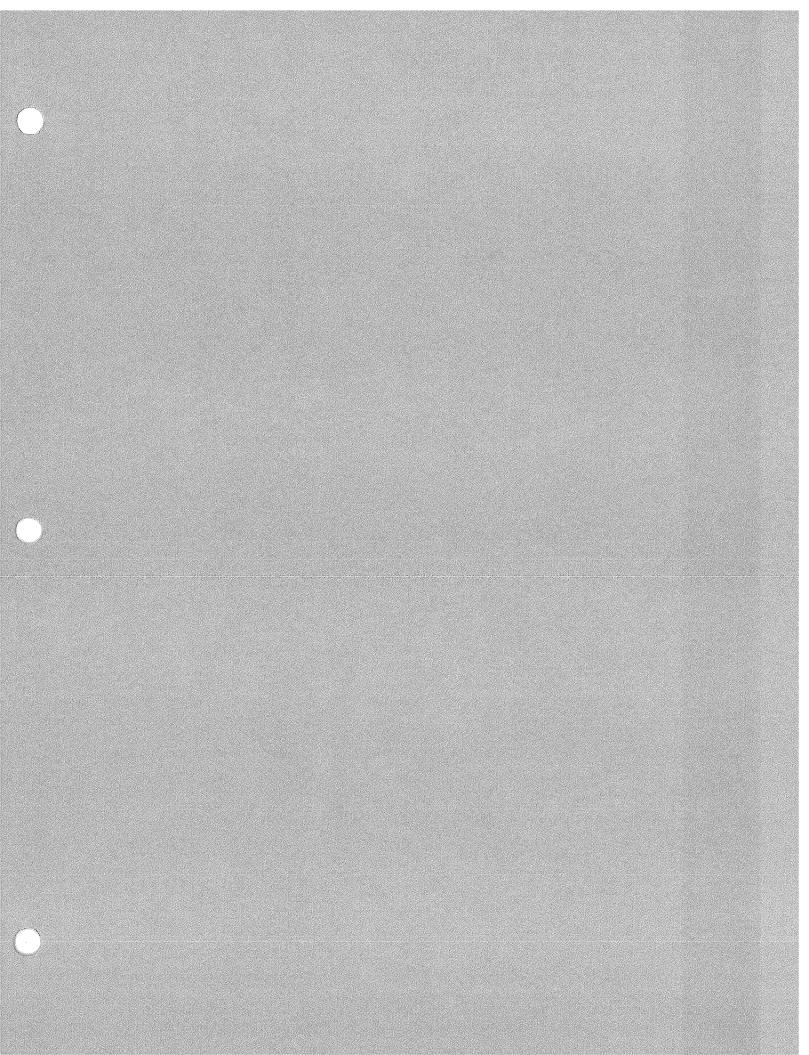
| Plot data    | used | in | an  | alys | is           |
|--------------|------|----|-----|------|--------------|
| Applied Head |      | F  | low | Date | ( <b>0</b> ) |

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 21.39           | 10.300        |
| 37.00           | 19.500        |




| l. | Client      | Morrison-Maierle/CSSA |
|----|-------------|-----------------------|
| Ż  | Site        | Miner Flat            |
|    | Project No. | 943-27691             |

Borehole 250 Interval Number


Plot data

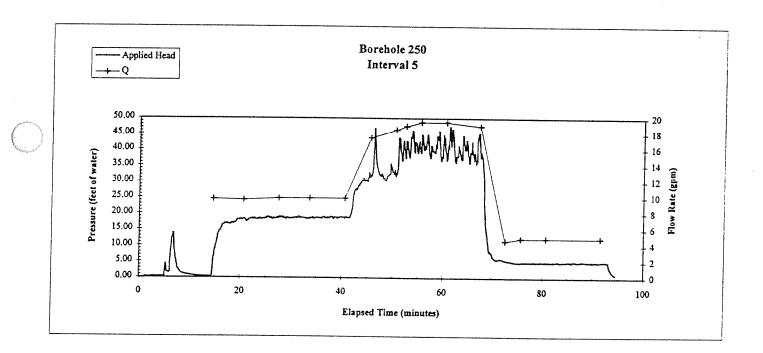
4

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 21.39           | 10.300        | 1.3771                 |
| 37.00           | 19.500        | 2.6072                 |



| K = 1/(  | $(2\pi L) \ge (Q/h_e) \ge \ln (L/r)$ | Q = Flow<br>he = App<br>L = lengt |                | -                            | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|--------------------------------------|-----------------------------------|----------------|------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity               |                                   |                |                              |                                                                    |
| K =      | 1.2E-03 cm/s<br>2.5E-03 feet/min     | Q =<br>h <sub>e</sub> =           | 1.654<br>21.39 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 1.4E-03 cm/s<br>2.7E-03 feet/min     | Q =<br>h <sub>e</sub> =           | 3.131<br>37.00 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =      | 1.3E-03 cm/s<br>2.5E-03 feet/min     | Trendline Slope                   | 12.69          |                              |                                                                    |




| 0E1.187.EM |                                                  |                                                                        |                                  |                                  |                                                              |                                           |                         |               | Average Q                      | (gaumin)      |          |               | 0.00     | 01.00         | 0.00       | 00.0     | 000      | 00.0     | 0.00     | 00.0<br>200   | 0.00     | 0,00     | 0.00     | 00.0     | 0.00         | 00.0           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 00.0     | 00.0     |             | 93          |
|------------|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------|-------------------------------------------|-------------------------|---------------|--------------------------------|---------------|----------|---------------|----------|---------------|------------|----------|----------|----------|----------|---------------|----------|----------|----------|----------|--------------|----------------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|
|            |                                                  |                                                                        |                                  |                                  |                                                              |                                           | 5 Point Moving Averages | mga mur gan   | Δ time Av                      |               |          |               | 0 00     | 0.00          | -0.02      | -0.02    | 0.04     | -0.03    | 0.00     | 0.05          | 0.36     | CC 0     |          |          |              | 00.17<br>01.07 |          |          |          |          | 10.0     |          |          |             |             |
|            |                                                  |                                                                        |                                  | lerval<br>Verical Denth (0)      | 209.95<br>219.94                                             | 96,112                                    | 5 Point Mo              |               | Applied Head                   |               |          |               | 60.07    | -0.03         | 0.0        | 3 3 9    | -0.03    | -0.04    | 0.04     | -0.02<br>0.02 | 0.06     | 0,15     | 0.22     | 0.17     | 87'n         | 0.25           | 17.0     | 0.21     | 0.20     | 0.19     | 07.0     | 0.23     | 110      | 0.27        | 0.28        |
|            |                                                  |                                                                        |                                  | Bottom of interval<br>Vertical I | 210.00 Above<br>220.00 Below                                 | Vertical depth of bottom of interval (ft) | 5                       |               | Average Q<br>(eal/min)         |               |          | 0.00          | 0.00     | 8.0           | 8.0        | 0.00     | 0'00     | 0.00     | 0.0      | 0.00          | 0.00     | 0.00     | 00.0     | 00.0     | 000          | 00.0           | 0.00     | 0.00     | 0.00     | 00.0     | 000      | 0.00     | 0.00     | 0.00        | 0:00        |
|            |                                                  |                                                                        |                                  | Hole depth (ft)                  | Above<br>Balow                                               | rtical depta of bo                        | 3 Point Moving Averages |               | ∆ time<br>(mins)               |               |          | 0.02          | 0.02     | 10.0          |            | 0.0      | 0.01     | 10.0     | 3 2      | 0.09          | 0.24     | 0.27     | 60 00    | 000      | 90.9         | 9.9            | ¥0.0-    | 10.0     | 8        | 00.0     | 10.0     | 0.06     | 0.06     | 0.04        | 00.0        |
|            |                                                  |                                                                        |                                  | erval<br>Vertical Depth (ft) He  |                                                              | 116.04 Ve                                 | 3 Point ]               |               | Appued Head<br>(feet of water) |               |          | -0.03         | 9.9      | 3 9           | 30         | 40.0     | 0.0      | 0.02     | 8 8      | -0.03         | 0.06     | 0.17     | 9 2      | 670      | 0.27         | 0.25           | 0.22     | 0.21     | 91.0     | 0.19     | 0.21     | 0.22     | 0.26     | 0.28        | 0.29        |
|            |                                                  | ddle packer<br>Ibak                                                    | calculation:                     | Top of laterval<br>Vertical      | 190.00 Above<br>190.00 Below                                 | p of interval (ft)                        |                         | -             | < =                            |               |          |               | 1        | し用            |            |          |          |          |          |               |          |          |          |          |              |                |          |          |          |          |          |          |          | · .         |             |
|            |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation: | Hole depth (ft)                  | Abuve<br>Boluw                                               | Vertical depth of top of interval ((t)    |                         | c             | (gal/min)                      |               |          |               |          |               |            |          |          |          |          |               |          |          |          | -        |              |                |          | •        |          |          |          | a        | -<br>    |             | 1.<br>2.4   |
|            |                                                  | FOG                                                                    | T                                | -                                | < 3                                                          | *                                         |                         | Annlied Head  | (feet of water)                | <b>10</b> .0- |          |               | -0.02    |               |            | 10.0-    |          |          |          | PO 0-         | 0.02     | 0.29     | 0.29     | 0.29     | 0.29         | 0.23           | 0.23     | 0.19     | 0.19     | 0.19     | 0.19     | 0.23     | 0.25     | 0.29        | 67 h        |
|            |                                                  |                                                                        | inchea                           | feet<br>foet below top of caring | loot below top of casing<br>foot<br>foot below top of casing | red below top of casing                   |                         | Mcasured Head | (feet of water)                | -0.04         | 10.0-    | <b>1</b> 0,04 | 0.0      | <b>No.0</b> - | <b>6.0</b> | 9.0      | 39       | 0.00     | -0.07    |               | 0.02     |          |          | 0.29     |              | 0.2<br>2       | 61.0     | 0.19     | 0.19     | 0.19     | 0.19     | 20       | 0.2      | 0.29        | }           |
|            | laierle/CSSA                                     |                                                                        |                                  |                                  | 25.36<br>162.70<br>162.70                                    |                                           |                         | Elapsed time  | (minutes)                      |               |          | 0.12          |          |               |            | 0.54     |          | 0.84     | 0.90     | 0.96<br>20.1  | 11       | 1.20     | 1.26     |          | <del>1</del> | 9C 1           | 1.68     | 1.50     | 1.86     | 16.1     | 1.04     | VI-2     | 2.1      | •<br>•<br>• | -<br>-<br>- |
|            | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250<br>5<br>12-Nov-95                                                  |                                  | Top                              |                                                              |                                           | 15,44,26                | Elapsed time  | (hours)                        | 0.00          | 0,00     | 00.0          | 0.01     |               |            | 10.0     |          | 0.01     | 0.02     | 0.02          | 0.02     | 0.02     | 0.02     | 0.02     | 20.0         | 60.0           | 0.0      | 0.03     | 0.03     | 0.03     |          | 100      | 10 0     | 10.0        |             |
| 1/3 w/s    | Client I<br>Site I<br>Project No. 5              | Borchole<br>Test Number<br>Test Date                                   | Borchole diameter                | Feet section location            | Length of teat interval<br>Gauge Depth<br>Static Water Level | General Lithology                         | Start Time              | Clock         | Time                           | 15:44:26      | 15:44:30 | 15:44:37      | 15,44,44 | 15:44:4       | 10.44.01   | 15(45,02 | 15:45:13 | 15.45.16 | 15.45.20 | 15.45.27      | 15:45:34 | 15,45,31 | 15:45:42 | 15-45-51 | 13:46.00     | 15.46.03       | 15.46.07 | 13:46:14 | 15.46.18 | 11 46-25 | 15:46:32 | 15:46:39 | 15,46,43 | 15.46.46    |             |

Ooldor Associates

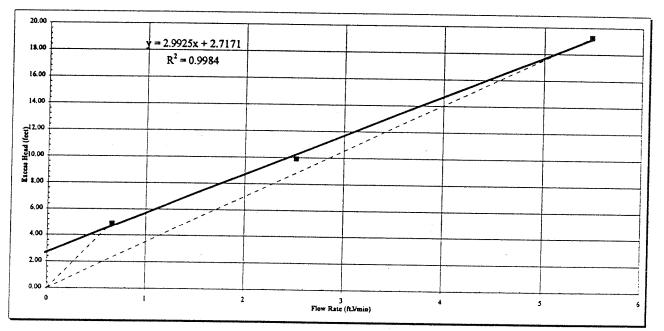
25003A.CHA, Input Data

## Plot data used in analysis

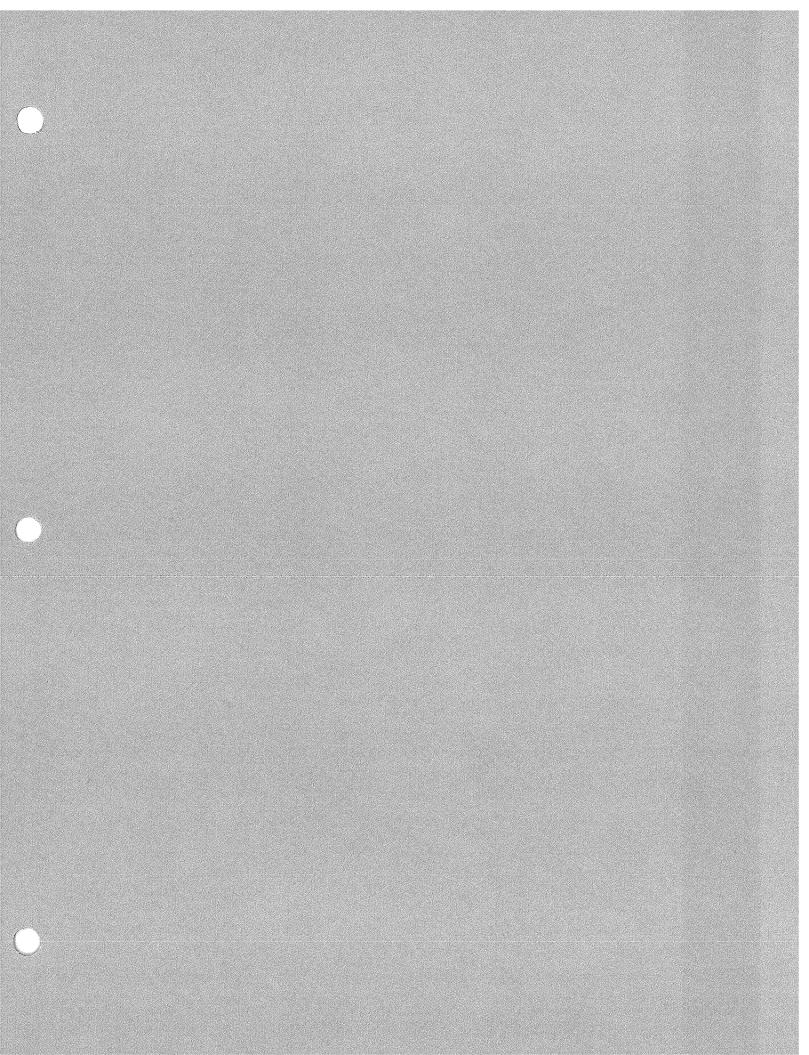
| Applied Head    | Flow Rate (Q)   |
|-----------------|-----------------|
| (feet of water) | (gal/min)       |
| 9.90            | 18.790          |
| 19.25<br>4.90   | 41.000<br>4.940 |



| ]. | Client      | Morrison-Maierle/CSSA |
|----|-------------|-----------------------|
|    | Site        | Miner Flat            |
|    | Project No. | 943-27691             |
|    |             |                       |


Borehole Interval Number

Plot data

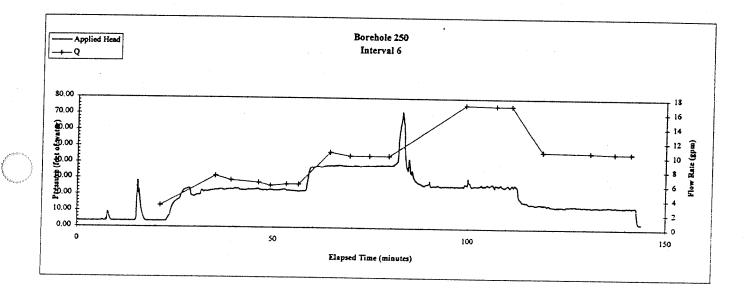

250

5

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 9.90            | 18.790        | 2.5122                 |
| 19.25           | 41.000        | 5,4817                 |
| 4.90            | 4.940         | 0.6605                 |
|                 |               |                        |



| K = 1/(  | $(2\pi L) \ge (Q/h_e) \ge \ln (L/r)$    | Q = Flow<br>he = Appl<br>L = length | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |                              |  |  |  |  |  |  |
|----------|-----------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Range of | hydraulic conductivity                  |                                     |                                                                                                                          |                              |  |  |  |  |  |  |
| K =      | 2.6E-03 cm/s<br>5.1E-03 feet/min        | Q =<br>h <sub>e</sub> =             | 0.793<br>4.94                                                                                                            | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =      | 2.6E-03 cm/s<br>5.1E-03 feet/min        | Q =<br>h <sub>o</sub> =             | 6.582<br>41.00                                                                                                           | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =      | <b>5.4E-03 cm/s</b><br>1.1E-02 feet/min | Trendline Slope                     | 2.99                                                                                                                     |                              |  |  |  |  |  |  |




| 943-2791.130 |                                                  |                                                                        |                                                                                          |                                                                                          |                                | 180                     | Average Q                        | (gal/min)       |         |         | 0,00         | 0.00  | 00.0         | 00.0         | 0000  | 00.0   | 00.0     | 0.00    | 0000    | 0.00                                                                            | 00.0    | 800                | 00:0       | 0.00    | 00:00   | 0.0   | 0.0        | 000                | 00,0         | 0.00         | 0.00 | 0.00         |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|-------------------------|----------------------------------|-----------------|---------|---------|--------------|-------|--------------|--------------|-------|--------|----------|---------|---------|---------------------------------------------------------------------------------|---------|--------------------|------------|---------|---------|-------|------------|--------------------|--------------|--------------|------|--------------|
|              |                                                  |                                                                        |                                                                                          |                                                                                          |                                | 5 Point Moving Averages | Δ time                           | (minutes)       |         |         | 10.0-        | 0.00  | <b>1</b> 0 0 | 0.00         | 0.05  | 0.02   | 10'0     | 10.0    | 5 5     | £070-                                                                           | -0.02   | 00.0               | 0.00       | 0.00    | -0.05   | 30    | 510<br>100 | 0.05               | 10.0-        | 10.0         | 0.00 | <b>1</b> 0.0 |
|              |                                                  |                                                                        | terval<br>Vertical Depth (ft)                                                            | 96 64 1<br>96 64 1                                                                       | 186.40                         | 5 Point N               | Applied Head                     | (Ject of water) |         |         | 3.58         | 3.57  | 13.5<br>15,5 | 75.6         | 156   | 9.5    | 95.6     | 95.6    | 3.56    | 73.E                                                                            | 90°C    | 1.57               | 75.6       | 3.57    | 3.36    | 9CT   | 85.6       | 3.59               | 3.60         | <b>09</b> .E | 0916 | 9.5          |
|              |                                                  |                                                                        | Bottom of laterval<br>Vertical                                                           | Below 2000 Above<br>Below 2001 190.00 Bolow<br>Verticeal death of bottom of interval (n) |                                | 5                       | Average Q                        | (B=0 mm)        |         | 0.00    | 0.00         | 000   | 0.00         | 000          | 000   | 0.00   | 0.00     | 0.00    | 00.00   | 00.0                                                                            | 00.0    | 0.00               | 0.00       | 80.0    | 000     | 0.0   | 0.00       | 0.00               | 0.00         | 0.00         | 000  | A0.0         |
|              |                                                  |                                                                        | Hole depth (f)<br>Abrea                                                                  | Bolow<br>Tical dents of bot                                                              |                                | 3 Point Moving Averages | Δ time<br>(mina)                 | Ì               |         | 0.00    | 0.03         | 50.0- | -0.02        | <b>1</b> 0.0 | 0.0   | 10:0   | 000      | -0.02   | 5.0-    | 3.9                                                                             | 0.00    | 101                | 10:00      |         | 10.0-   | 90.0  | 0.04       | 0.00               | 10.0         | 5.7          | 100  |              |
|              |                                                  | 1                                                                      | a:<br>trval<br>Vertical Deptis (ft) Ho<br>Abore 139.96                                   | 1. N.                                                                                    |                                | 3 Point N               | Applied Head<br>(feet of water)  |                 |         | 3.58    | 95.E         | 3.58  | 3.56         | 901<br>151   | 3.39  | 3.59   | 8 (S) (E | 9.59    | 3.55    | 3.56                                                                            | 3.56    | 151                | 1.57       | 3.56    | 3.56    | 3.57  | 3.36       | 3.60               | <b>18</b> .5 | 976          | 3.60 |              |
|              |                                                  | idle packer<br>sole                                                    | calculation:<br>Top of interval<br>Vertical 1<br>160.00 Above                            | 170.00 Below<br>of interval (ft)                                                         |                                |                         | ¥ 9                              |                 |         |         |              |       |              |              | . 7   |        |          |         |         |                                                                                 |         |                    |            |         |         |       |            |                    |              |              |      |              |
|              |                                                  | Test Type:<br>Coastant kend, Straddle packer<br>Gauge localed downhole | True vertical depth calculation:<br>Top of later<br>Hole depth (ft) 16000 A<br>Abovo     | Below 170.00 Belov<br>Vertical depth of top of laterval (ft)                             |                                |                         | Q<br>(gal/min)                   |                 |         |         |              |       |              |              |       |        |          |         |         |                                                                                 |         |                    |            |         |         |       |            |                    |              |              |      |              |
|              |                                                  | ĔŬĞ                                                                    | T H                                                                                      | C Ba                                                                                     |                                |                         | Applied Head<br>(feet of water)  | 3.56            |         | 09'E    |              |       |              |              | 3.59  |        |          | 09T     |         |                                                                                 | 3.36    |                    | 3.56       | 3.56    |         | 3.55  |            |                    |              |              | 3.60 |              |
|              |                                                  |                                                                        | inches<br>Foot<br>foot below top of casing<br>foot below top of casing                   | rea<br>feet below top of casing<br>feet below top of casing                              |                                |                         | Measured Head<br>(feet of water) | 0.0             | 0.01    | 10.0    | 10.0         | 00    | 0.01         | 10.0-        | 10.0  | 10.0   | 10:0     | 10.0    | £0.0-   | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 3 9     | 0.01               | 9.6        | -0.03   | 3.4     | 6 O   |            |                    | 10.0         |              | 10.0 |              |
|              | rle/CSSA                                         |                                                                        | 3.78<br>3.78<br>0.16<br>161.08<br>6.44<br>186.44<br>75<br>75 36                          |                                                                                          |                                |                         | Elapsed time<br>(minutes)        | 0.00            | 0.06    | 0.18    | 0:00<br>AF 0 |       |              | 0.60         |       |        | 96 D     |         |         | 97 1                                                                            |         |                    | 1.62       | 1 74    | 1.86    | 16.1  | 2.04       | 2.10               | 111          | 177          | 1    |              |
|              | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691 | 250<br>6<br>13-Nøv-95                                                  | Tep<br>Botion                                                                            |                                                                                          |                                |                         | Elapsed time<br>(hours)          | 0.00            | 0.00    | 0.00    | 10.0         | 10.0  | 0.01         | 10.0         | 0.01  | 10.0   | 0.02     | 0.02    | 0.02    | 0.02                                                                            | 0.02    | [0]0               | 600<br>100 | E0 0    | 0.03    | 0.03  | EO.0       | 0.04               | 1010<br>1010 |              |      |              |
| 1/Julyo      | Client<br>Site<br>Project No.                    | Borehole<br>Test Number<br>Test Date                                   | Borcholc diameter<br>Borchole radius<br>Test section location<br>Length of test interval | Gauge Depth<br>Static Water Level                                                        | General Lithology<br>Sandstone |                         | Time                             | 7:30.49         | 7.30:56 | 7.31.00 | UTIC2        | +F167 | 7.31.21      | 2616.7       | 90101 | 2016.7 | 7:31:50  | 72:16:1 | 7-32-01 | 11:161                                                                          | 21:26:7 | 91.56.7<br>85.56.7 | 06.56.7    | £6:26:7 | 7.32.41 | 19267 | 16,26,7    | 25:22:7<br>20:02:1 | 20:001/      | 60.EE.T      |      |              |

Golder Associates

25006A.CHA, Input Data

|                                          | Plot data use                      | ed in analysis                  |                            |
|------------------------------------------|------------------------------------|---------------------------------|----------------------------|
| Steps                                    | 1 and 2                            | Steps 3 ar                      | nd 4                       |
| Applied Head<br>(feet of water)<br>22.33 | Flow Rate (Q)<br>(gal/min)<br>6.00 | Applied Head<br>(feet of water) | Flow Rate (Q)<br>(gal/min) |
| 38.73                                    | 10.00                              | 26.10<br>13.50                  | 17.00<br>10.50             |



| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

| 250 |
|-----|
| 6   |
|     |

|        | Plot data<br>Steps 1 and 2<br>Applied Head<br>(feet of water)<br>22.33<br>38.73 | Flow Rate (Q)<br>(gal/min)<br>6.000<br>10.000 | Flow Rate (Q)<br>(ft <sup>3</sup> /min)<br>0.8022<br>1.3370 | Steps 3 and 4<br>Applied Head<br>(feet of water)<br>26,10<br>13.50 | Flow Rate (Q)<br>(gal/min)<br>17<br>10.5 | Flow Rate (Q)<br>(ft <sup>2</sup> /min)<br>2.2729<br>1.4039 |      |
|--------|---------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|------|
| *0.00  |                                                                                 |                                               |                                                             | ······································                             |                                          |                                                             |      |
| 35.00  |                                                                                 |                                               |                                                             | 2                                                                  |                                          |                                                             |      |
| 30,00  | y = 30.666x -                                                                   | 2.27                                          |                                                             |                                                                    |                                          |                                                             |      |
| 25.00  |                                                                                 |                                               | /                                                           |                                                                    |                                          |                                                             |      |
| j      |                                                                                 |                                               |                                                             |                                                                    |                                          |                                                             |      |
| 15.00  |                                                                                 | //                                            |                                                             |                                                                    |                                          |                                                             |      |
| 10.00  |                                                                                 |                                               |                                                             |                                                                    |                                          | y = 14.499x - 6.8538                                        | **** |
| 5.00   |                                                                                 | ·····                                         |                                                             |                                                                    |                                          |                                                             |      |
| 0.00   |                                                                                 |                                               |                                                             |                                                                    |                                          |                                                             |      |
| 0.0000 | 9_5000                                                                          |                                               | 1.0000<br>Flow Ra                                           | 1.5000                                                             |                                          | 2.0000                                                      |      |

#### $K = 1/(2\pi L) \times (Q/h_{\bullet}) \times \ln (L/r)$

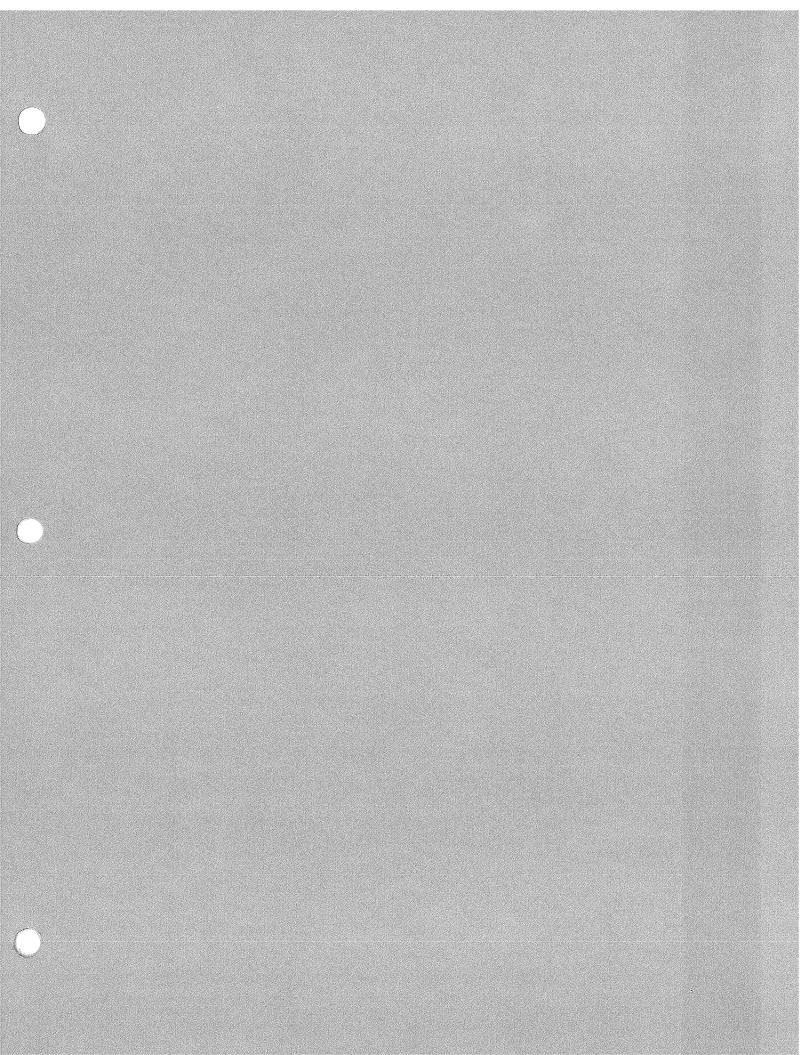
### Range of hydraulic conductivity

| Steps 1 and 2 | K = | 7.0E-04 cm/s<br>1.4E-03 feet/min | Q =<br>h, =             |         | 0.963<br>22.33 | Sær<br>ft <sup>3</sup> /min<br>feet | si3 aad 4<br>K∷≕ | 1.7E-03 cm/s<br>3.3E-03 feet/min | Q ≠<br>h. = | 2.729<br>26.10 | ft <sup>3</sup> /min<br>feet |
|---------------|-----|----------------------------------|-------------------------|---------|----------------|-------------------------------------|------------------|----------------------------------|-------------|----------------|------------------------------|
|               | K = | 6.7E-04 cm/s<br>1.3E-03 feet/min | Q =<br>h <sub>*</sub> = |         | 1.606<br>38.73 | ft <sup>3</sup> /min<br>feet        | K =              | 2.0E-03 cm/s<br>4.0E-03 feet/min | Q =<br>h, = | 1.686<br>13.50 | ft <sup>3</sup> /min<br>feet |
|               | K = | 5.3E-04 cm/s<br>1.0E-03 feet/min |                         | Slope = | 30.66          |                                     | K =              | 1.1E-03 cm/s<br>2.2E-03 feet/min | Slope =     | 14.50          |                              |

K = hydraulic conductivity

he = Applied headL = length of interval tested

Q = Flow rate


r = borehole radius

Golder Associates

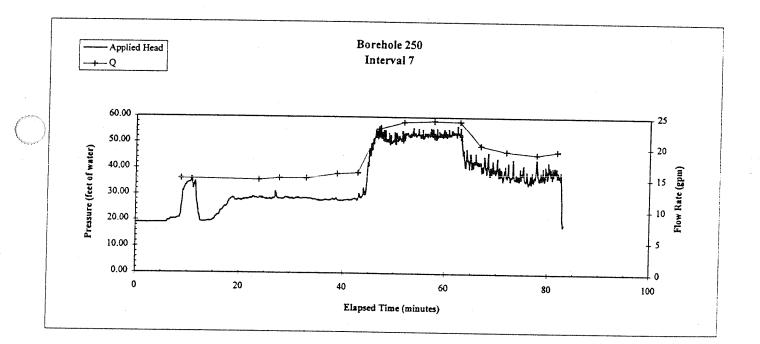
(feet/min)

(ft<sup>3</sup>/min)

(feet) (feet) (feet)



| 943-2791.130 |                                                                           |                                                                                                                                                                       | ţc.                     | Average ()<br>(oal/min)          | 2                            |                      | 00.0           | 000            | 0.0      | 0.00                 | 00.0           | 0.00                 | 0.00           | 00.0           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00           | 00 00    | 000         | 0.00     | 0.00           | 0.00     | 0,00    | 0.00        | 0.00   | 0.00<br>00.00              |
|--------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|------------------------------|----------------------|----------------|----------------|----------|----------------------|----------------|----------------------|----------------|----------------|----------|----------|----------|----------|----------------|----------|-------------|----------|----------------|----------|---------|-------------|--------|----------------------------|
| $\bigcirc$   |                                                                           | i.<br>A                                                                                                                                                               | 5 Point Moving Averages | Δ time<br>(minutes)              |                              |                      | 0.01           | 0.0            | -0.02    | 0.00                 | 20.0           | 10.0-                | 10.0           | 10.0           | 0.00     | 0.00     | 0.00     | 6 03     | 000            | 000      | -0.02       | 0.00     | 10.0-          | 0.00     | 10.0-   | 0.00        | -0.03  | 00.0                       |
|              |                                                                           | terval<br>Vertical Depth (1)<br>Above 149.97<br>Balow 159.96<br>1 (1) 159.40                                                                                          | 5 Point N               | Applied Head<br>(feet of water)  |                              |                      | 19.06          | 19.06<br>19.07 | 19.07    | 19.06<br>19.06       | 19.07          | 90.61                | 90.61<br>20 00 | 97.61<br>19.06 | 20.61    | 19.05    | 19.05    | 19.06    | 19,06<br>19,06 | 906      | 19.06       | 19.06    | £0.61          | 19.05    | 19.05   | 19.05       | 19.04  | 19.04                      |
|              |                                                                           | Bottom of interval<br>Hole depth (r) Vertica<br>Abova 150.00 Above<br>Bebow 160.00 Bolow<br>Vertical depth of bottom of interval (r)                                  | 5                       | Average Q<br>(gal/min)           |                              | 00.0                 | 0.00           | 0.00           | 00.0     | 000                  | 0.00           | 00.0                 | 000            | 00.0           | 00.00    | 00.00    | 0.00     | 0.00     | 000            | 0.00     | 00.0        | 00.00    | 0.00           | 0.0      | 000     | 8.0         | 80     | 0.00                       |
|              |                                                                           | Hole depth (f)<br>Abore<br>Below<br>Verticel depth of be                                                                                                              | 3 Point Moving Averages | Δ time<br>(mins)                 |                              | 0.0                  | 0.01           | 000            | 0.00     | 0.02                 | 0.00           | 0.02                 | 10.0-          | 0.0            | 0.00     | 0.0      | 0.00     | 8.0      | 0.0            | -0.02    | 0.00        | 0.00     | 0.0            | 10.0-    | 80      | 000         | 204    | 90.0                       |
|              |                                                                           | t:<br>Erval<br>Above 12997<br>Babow 12997<br>Babow 139405                                                                                                             | 3 Point                 | Applied Head<br>(feet of water)  |                              | 20.61                | 30.91<br>20.01 | 10.61          | 19.07    | 10.01<br>19.06       | 19.06          | 19.07                | 19.06          | 19.05          | 19.05    | 19.05    | 20.41    | 90.61    | 19.06          | 19.07    | 19.06       | 90.61    | 20.61<br>20.01 | 50.61    | 20.61   | 19.05       | 10.61  | 19.01                      |
|              | traddle packer<br>wabole                                                  | True vertical depth calculation:<br>Top of interval<br>Hole depth (It) Vertical<br>Above 130.00 Bolow<br>Bolow 140.00 Bolow<br>Vertical depth of top of interval (It) |                         |                                  |                              |                      | 97 L           |                |          |                      |                |                      |                | e di           |          |          |          |          |                | 1.4      |             |          |                |          |         |             |        |                            |
| $\bigcirc$   | Tei Type:<br>Contant kend, Stradde packer<br>Gavge located dewahole       | True vertical depth calculation:<br>Top of later<br>Hole depth (1)<br>Above 1130.00<br>Bolow 140.00<br>Vertical depth of top of laterval                              |                         | Q<br>(gal/min)                   |                              |                      |                |                |          |                      |                |                      |                |                |          |          |          |          |                |          |             |          |                |          | •       |             |        |                            |
|              | 100                                                                       |                                                                                                                                                                       |                         | Applied Head<br>(feet of water)  | 19.01<br>19.05               |                      |                |                | 19.05    | 90.61                | 90.61<br>19.06 | 19.01                | 20.41          | 20.91<br>20.02 | 20.61    | 20,61    | 19.05    | 19.05    | 19.01          | 19.05    | 19.06       | 90.61    | 19.05          | 19.05    | 19.05   |             | 19.05  | 19.00                      |
|              |                                                                           | inchea<br>feoi<br>feot below up of casing<br>feoi<br>feoi<br>feot below up of casing<br>feot below up of casing                                                       |                         | Measured Head<br>(feet of water) | 20°0                         | · •••                | 0.02           | 9.0            | 0.00     | 0.00                 | 0.00           | 0.02                 | 10.0-          | 10.01          | 10.0-    | 10.0-    | 10'0'    | 19       |                | 10.0     | <b>0</b> 01 | 000      | 10.0-          | - 10.0-  | 10.0-   | 10 0-       | 10.0-  | 200 <b>0</b>               |
|              | rle/CSSA                                                                  | 3.78<br>0.16<br>139.44<br>139.44<br>25.36<br>132.770<br>138.29                                                                                                        |                         | Elapsed time<br>(minutes)        | 0.00<br>90.0                 | 0.12<br>0.18         | 0.24           | 0.36<br>0.42   | 0.54     | 09:0<br>11           | 1.75           | 0.84                 | 8.0            | 1.14           | 1.20     | 1.26     |          |          | 1.56           | 168      | 1.80        | 1.86     | 1.92           | 2.04     | 2.10    | 2.16        | 2.28   | ¥77                        |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>250<br>7<br>13-Nov-95 | Top<br>Boilean                                                                                                                                                        | 81:7E:01                | Elapsed time<br>(hours)          | 0000                         | 0.00                 | 0.0            | 10,0           | 0.01     | 10.0                 | 10.0           | 10.0                 | 0.02           | 0.02           | 0.02     | 0.02     | 0.02     | 0.02     | [0:0           | 0.03     |             | 0.03     | 0.03           | E0:0     |         | <b>10</b> 0 |        | 5                          |
| 100          | Client<br>Site<br>Project No.<br>Borchole<br>Test Number<br>Test Date     | Borchole diameter<br>Borchole radiua<br>Test acction location<br>Leagth of test interval<br>Gauge Depth<br>Static Water Level<br>General Litubolegy                   | Start Time              |                                  | 10:37:1 <b>8</b><br>10:37:22 | 10.37.25<br>10:37.29 | 10:37:32       | 10.37.43       | 10.37.50 | 10.37.54<br>10.38.01 | 10:31:05       | 10.31.01<br>10.31.15 | 01.0C.01       | 10.31.26       | 10:36:30 | 10:36:34 | 19:36:01 | 10.35.44 | 20.90.01       | 10:31:59 | 10.39.06    | 01:00:01 | C1:90:01       | 10:39:20 | 47%C'01 | 17.4C.01    | 10.001 | 1<br>2<br>2<br>4<br>2<br>2 |


.

Golder Associates

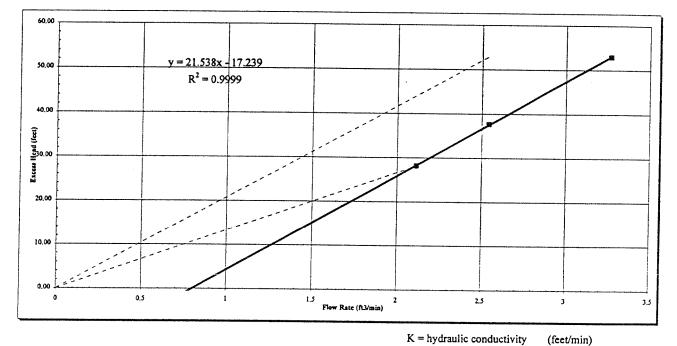
23007A.CHA, Input Data

## Plot data used in analysis

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 28.15           | 15.800        |
| 52.96           | 24.400        |
| 37.65           | 19.000        |

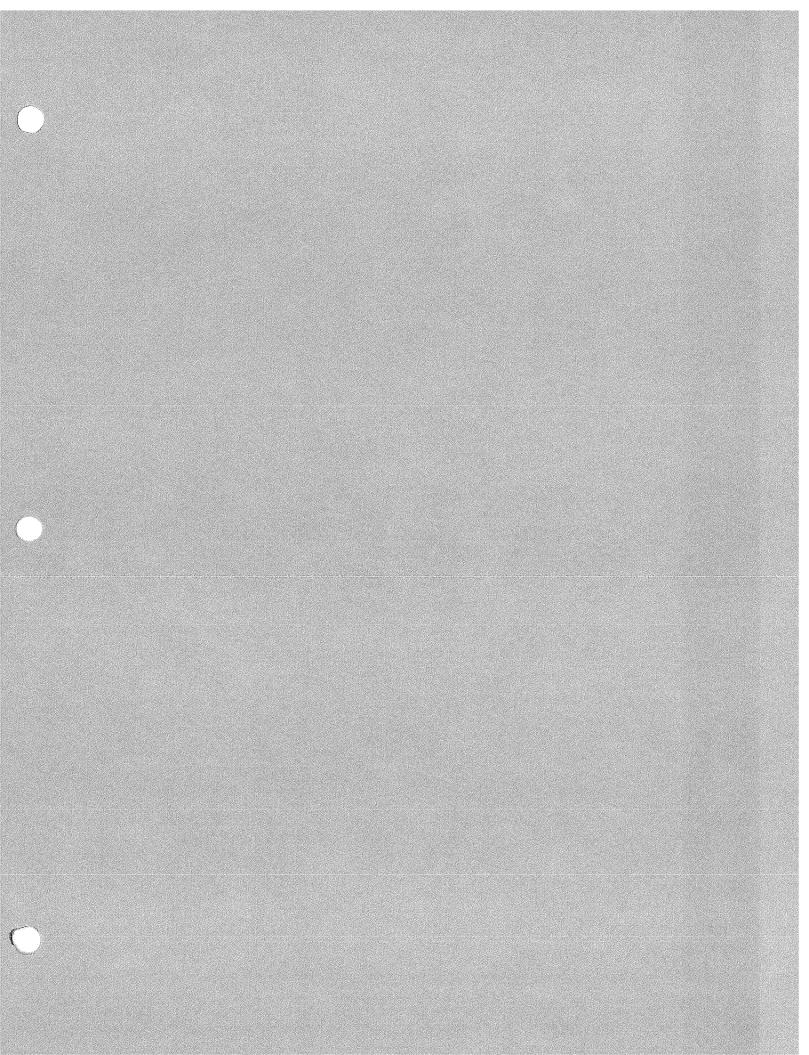


| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |


Borehole Interval Number

#### Plot data

250


7

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 28.15           | 15.800        | 2.1125                 |
| 52.96           | 24.400        | 3.2623                 |
| 37.65           | 19.000        | 2.5403                 |



| K = 1/(  | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow<br>he = App    | lied head<br>h of interv | •                            | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|---------------------------------------|-------------------------|--------------------------|------------------------------|------------------------------------------------------|
| Range of | hydraulic conductivity                |                         |                          |                              |                                                      |
| K =      | 1.5E-03 cm/s<br>2.9E-03 feet/min      | Q =<br>h <sub>e</sub> = | 2.537<br>28.15           | ft <sup>3</sup> /min<br>feet |                                                      |
| K =      | 1.2E-03 cm/s<br>2.4E-03 feet/min      | Q =<br>h <sub>e</sub> = | 3.917<br>52.96           | ft <sup>3</sup> /min<br>feet |                                                      |
| K =      | 7.5E-04 cm/s<br>1.5E-03 feet/min      | Trendline Slope         | 21.54                    |                              |                                                      |

C



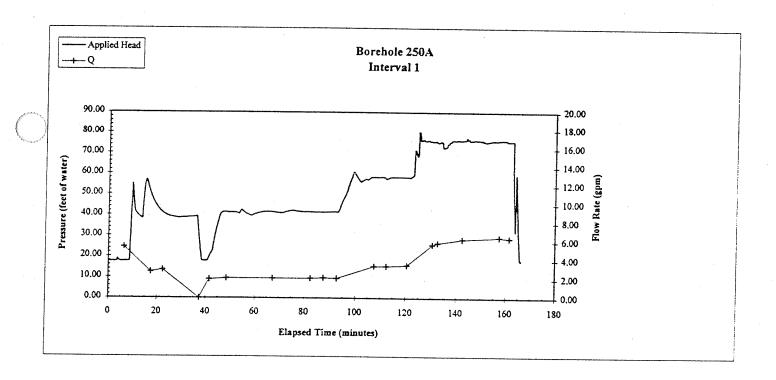
Packer Testing Results Borehole MF 250A

 $( \ )$ 

| Iop         Iop         Botton         Botton         Low         feet/min         cm/sec           (b)         (elevation) <sup>3</sup> (btc)         (elevation)         Low         High         Regression <sup>3</sup> Low         High         Feet/min         cm/sec           75         6073.41         15.75         6063.41         Basalt         4.25E+01         3.21E-02         3.21 | Interval # |            | Interva                  | Interval Depth |             | Lithology |                  |           | Hydraulic Conductivity | Conductiv | itv          |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------------------|----------------|-------------|-----------|------------------|-----------|------------------------|-----------|--------------|--------------|
| (c)1(elevation)2(fb(c)(elevation)(elevation)Low4High75 $6073.41$ $15.75$ $6063.41$ $Basalt$ $6.32E.02$ $2.216.02$ $3.21E.02$ 75 $6073.41$ $15.75$ $6063.41$ $Basalt$ $4.25E+01$ $2.16E+01$ $(91 \text{ gpm w/no})$ 75 $6063.41$ $30.85$ $6048.31$ $Basalt$ $1.99E-01$ $2.16E+01$ $(91 \text{ gpm w/no})$ 75 $6063.41$ $2.5.75$ $6043.41$ $Basalt$ $1.99E-01$ $1.01E-01$ $1.01E-01$ 75 $6043.41$ $35.75$ $6043.41$ $Basalt$ $2.08E-01$ $1.01E-04$ $1.06E-01$ 75 $6043.41$ $55.85$ $6023.31$ $Basalt$ $2.06E-02$ $81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.31$ $Basalt$ $1.00E-05$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.41$ $Basalt$ $1.00E-05$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6023.53$ $80.73$ $598.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 6 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 6 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 6 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 6 <th></th> <th><b>T</b>(</th> <th></th> <th>Bott</th> <th></th> <th></th> <th></th> <th>feet/min</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                        |            | <b>T</b> ( |                          | Bott           |             |           |                  | feet/min  |                        |           |              |              |
| V)(LOVALIOL)(LOVALIOL)(LOVALIOL)(LOVALIOL)(LOVHigh75 $6073.41$ $15.75$ $6063.41$ Basalt $6.32E-02$ $3.21E-02$ $3.21E-02$ 00 $6071.16$ $30.85$ $6048.31$ Basalt $4.25E+01$ $2.16E+01$ $(91 \text{ gpm w/ no})$ 75 $6063.41$ $25.75$ $6043.41$ Basalt $1.99E-01$ $2.16E+01$ $(91 \text{ gpm w/ no})$ 75 $6063.41$ $35.75$ $6043.41$ Basalt $2.08E-01$ $1.01E-01$ $1.01E-01$ 75 $6043.41$ $35.75$ $6043.41$ Basalt $2.06E-02$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 75 $6043.41$ $55.75$ $6023.41$ Basalt $1.00E-05$ $5.81E-05$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.41$ Basalt $6016-02$ $5.81E-05$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.41$ Basalt $6018-04$ $5.57E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.41$ Basalt $6023.41$ $3.63E-04$ $5.77E-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ Basalt $2.18E-04$ $3.63E-04$ $5.77E-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ Basalt $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$                                                                                                                                                                                                                                                                                                                       |            | (Phic)     | (alawation) <sup>2</sup> |                |             |           |                  |           | L                      |           |              |              |
| 75 $6073.41$ 15.75 $6063.41$ Basalt $6.32E-02$ $m$ $3.21E-02$ $3.21E-02$ $m$ 00 $6071.16$ $30.85$ $6048.31$ $Basalt$ $4.25E+01$ $2.16E+01$ $(91 \text{ gpm w/ not}$ 75 $6063.41$ $25.75$ $6043.41$ $Basalt$ $1.99E-01$ $1.01E-01$ $1.01E-01$ 75 $6063.41$ $35.75$ $6043.41$ $Basalt$ $2.08E-01$ $1.06E-01$ $1.06E-01$ 75 $6043.41$ $55.85$ $6023.31$ $Basalt$ $2.06E-02$ $5.81E-05$ $1.05E-02$ 75 $6043.41$ $55.85$ $6023.31$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6043.41$ $55.75$ $6033.41$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.576$ $6023.31$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.578$ $6023.31$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.578$ $6023.41$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$                                                                                                                                                                                                                                                                                                                            |            |            | (cicvation)              |                | (elevation) |           | TOW              | Highy     | Regression             |           | High         | Regression   |
| 73 $60/3.41$ $15.75$ $6063.41$ $Basalt$ $6.32E-02$ $3.21E-02$ $3.212E-02$ $3.212E-04$ $3.212E-04$ $3.212E-04$                                                                                                          | •          | 31.3       |                          |                |             |           |                  |           |                        |           |              |              |
| 00 $6071.16$ $30.85$ $6048.31$ $Basalt$ $4.25E+01$ $7.5$ $2.16E+01$ $(91 \text{ gpm w/ nor}$ 75 $6063.41$ $25.75$ $6043.41$ $Basalt$ $1.99E-01$ $1.01E-01$ $1.01E-01$ $1.01E-01$ 75 $6063.41$ $35.75$ $6043.41$ $Basalt$ $2.08E-02$ $1.09E-01$ $1.06E-01$ $1.06E-01$ $1.06E-01$ 75 $6048.41$ $55.85$ $6023.31$ $Basalt$ $2.06E-02$ $5.81E-05$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 75 $6043.41$ $45.75$ $6023.41$ $Basalt$ $1.00E-05$ $5.81E-05$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.575$ $6023.31$ $Basalt$ $1.00E-05$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.578$ $6023.31$ $Basalt$ $1.00E-05$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.578$ $6023.41$ $Basalt$ $1.00E-04$ $3.63E-04$ $5.09E-06$ $2.949E-05$ 75 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $3.57E-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 60 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$                                                                                                                                                                                                                                                                                                                                 | 0          | c/.c       | 00/3.41                  | 15.75          | 6063.41     | Basalt    | 6.32E-02         |           |                        | 3.21F-02  |              |              |
| 75 $6063.41$ $25.75$ $6053.41$ $Basalt$ $1.99E-01$ $1.01E-01$ $1.01E-01$ $1.01E-01$ $1.01E-01$ 75 $6053.41$ $35.75$ $6043.41$ $Basalt$ $2.08E-02$ $1.01E-01$ $1.01E-01$ $1.01E-01$ 75 $6043.41$ $55.85$ $6023.31$ $Basalt$ $2.06E-02$ $5.81E-05$ $1.05E-02$ $1.05E-02$ 75 $6043.41$ $45.75$ $6033.41$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.31$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6023.41$ $Basalt$ $1.00E-03$ $5.81E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $5.998.43$ $Basalt$ $1.00E-04$ $3.63E-04$ $5.07-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $3.63E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ $Basalt$ $2.18E-04$ $3.63E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3          | 8.00       | 6071.16                  | 30.85          | 6048.31     | Basalt    | 4.25E+01         |           |                        | 166401    | - /          |              |
| 75       6053.41       35.75       6043.41       Basalt       2.08E-01       1.01E-01         75       6048.41       55.85       6023.31       Basalt       2.08E-02       1.05E-02       1.05E-02         75       6048.41       55.85       6023.31       Basalt       1.00E-03       5.81E-05       1.05E-02         75       6043.41       45.75       6033.41       Basalt       1.00E-03       5.81E-05       1.43E-04       5.09E-06       2.949E-05         75       6033.41       55.75       6023.41       Basalt       1.00E-03       5.81E-05       1.43E-04       5.09E-06       2.949E-05         63       6023.53       80.73       5998.43       Basalt       1.00E-04       3.63E-04       5.57E-04       1.11E-04       1.84E-04         63       6023.53       80.73       5998.43       Basalt       2.18E-04       3.63E-04       5.57E-04       1.11E-04       1.84E-04                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7          | 15.75      | 6063.41                  | 25.75          | 6053.41     | Bacalt    | 1 996-01         |           |                        | 101001    | (71 gpm w/ 1 | to response) |
| 75 $6048.41$ 55.85 $6023.31$ Basalt $2.06E-01$ $1.06E-01$ $1.06E-01$ 75 $6043.41$ $55.85$ $6023.31$ Basalt $2.06E-02$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 75 $6033.41$ $55.75$ $6033.41$ Basalt $1.00E-05$ $5.81E-05$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 63 $6033.41$ $55.75$ $6023.41$ Basalt $falling head data only$ $1.43E-04$ $5.09E-06$ $2.949E-05$ 63 $6023.53$ $80.73$ $5998.43$ Basalt $2.18E-04$ $3.63E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$ 63 $6023.53$ $80.73$ $5998.43$ Basalt $2.18E-04$ $3.63E-04$ $5.57E-04$ $1.11E-04$ $1.84E-04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6          | 25.75      | 14 505                   | 35 75          | 11 2103     | 10        | 10 000 0         |           |                        | 1.016-01  |              |              |
| 75         6048.41         55.85         6023.31         Basalt         2.06E-02         5.81E-02         1.05E-02         2.949E-05           75         6043.41         45.75         6033.41         Basalt         1.00E-05         5.81E-05         1.43E-04         5.09E-06         2.949E-05           75         6033.41         55.75         6023.41         Basalt         1.00E-05         5.81E-05         1.43E-04         5.09E-06         2.949E-05           75         6033.41         55.75         6023.41         Basalt         falling head data only         5.07E-04         1.11E-04         1.84E-04           63         6023.53         80.73         5998.43         Basalt         2.18E-04         3.63E-04         5.57E-04         1.11E-04         1.84E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |                          |                | 14.0400     | Daball    | 2.U&E-UI         |           |                        | 1.06E-01  |              |              |
| 75       6043.41       45.75       6033.41       Basalt       1.00E-05       5.81E-05       1.43E-04       5.09E-06       2.949E-05         75       6033.41       55.75       6023.41       Basalt       falling head       4ata only       5.09E-04       5.09E-06       2.949E-05         63       6033.41       55.75       6023.41       Basalt       falling head       4ata only       5.57E-04       1.11E-04       1.84E-04         63       6023.53       80.73       5998.43       Basalt       2.18E-04       3.63E-04       5.57E-04       1.11E-04       1.84E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 30.75      | 6048.41                  | 55.85          | 6023.31     | Basalt    | 2.06E-02         |           |                        | 1 058-02  |              |              |
| 75         6033.41         55.75         6023.41         Basalt         falling head         J.012-04         J.09E-05         L.949E-05           63         6023.53         80.73         5998.43         Basalt         falling head         4aa only         J.045E-04         J.049E-05         L.949E-05           63         6023.53         80.73         5998.43         Basalt         2.18E-04         3.63E-04         J.11E-04         1.84E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ś          | 35.75      | 6043.41                  | 45.75          | 6033.41     | Racalt    | 1 005-05         | 5 815 05  | 1 125 01               | 70-7601   |              |              |
| 63         6023.53         80.73         5998.43         Basalt         2.18E-04         3.63E-04         5.57E-04         1.11E-04         1.84E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4          | 45.75      | 6033.41                  | 55.75          | 19 2009     | Basalt    | CO-TOO.I         | CO-710-C  | 1.435-04               | 0.095-00  | 2.949E-05    | 7.25E-05     |
| 00.23.23 00.73 00.73 D98.43 Basalt 2.18E-04 3.63E-04 5.57E-04 1.11E-04 1.84E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -          | 22 23      | C3 CUVY                  | CF 00          | 11.0400     |           | I TATITIN TICAUL | laua only |                        |           |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | cn.cr      | 66.6200                  | 60.73          | 5998.43     | Basalt    | 2.18E-04         | 3.63E-04  | 5.57E-04               | 1.11E-04  | 1.84E-04     | 2 83F-04     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |                          |                |             |           |                  |           |                        |           |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |                          |                |             |           |                  |           |                        |           |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |                          |                |             |           |                  |           |                        |           |              |              |

rectorion top of casing. <sup>2</sup> Fect above mean sea level <sup>3</sup> Regression analysis does not include origin as a point. <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.

250A


| 0(1,1672-614 |                                                  |                                                                        |                                      |                                           |                                        |                                                      |                             |                         | Average Q                 | (gal/min)         |              |          |                      | 80.0                | 0.0      | 0.00           | 00:0                 | 00.0         | 0.00     | 0.00              | 0.0           | 0.0           | 0.00     | 0.00     | 0.00         | 8.0            | 0.00     | 0.00      | 0.0        | 8.0      | 0.0      | 0.00     | 0.00     | 90.0<br>90.0   |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------|-------------------------|---------------------------|-------------------|--------------|----------|----------------------|---------------------|----------|----------------|----------------------|--------------|----------|-------------------|---------------|---------------|----------|----------|--------------|----------------|----------|-----------|------------|----------|----------|----------|----------|----------------|
| (*           |                                                  |                                                                        |                                      |                                           |                                        |                                                      |                             | 5 Point Moving Averages | Δ time                    | (minutes)         |              |          |                      | 50.0                | 10.0     | 0.10           | 0.05                 | 0.02         | -0.02    | -0.0 <del>1</del> | 10.0-<br>N 0- | 90.0-         | 0.00     | 10.0     | 10.0         | 0.02           | -0.07    | 0.02      | 10°9       | 800      | 90.0     | 0.02     | 00'0     | 90.07<br>10.09 |
|              |                                                  |                                                                        |                                      | cpth (fi)                                 | 20.28                                  | 17.04                                                |                             | 5 Point M               | Applied Head              | (feet of water)   |              |          | 9                    | 571                 | 55.71    | 12.51          | 17.54                | 17.61        | 17.61    | 17.60             | 17.58         | 17.57         | 17.56    | 12.57    | 27.1<br>17.5 | 17.57          | 17.57    | 35.71     | 87 L       | 55.71    | 12.71    | 17.57    | 12.51    | 15.11<br>82.71 |
|              |                                                  |                                                                        | alculation:                          | Bottom of interval<br>Vertical Depth (ft) | B0.00 Above<br>B4bov                   | Vertical dopth of bottom of laterval (ft)            | ,<br>,                      | 8                       | Average Q                 | (gal/min)         |              |          | 0.00                 | 0.0                 | 0.00     | 0.0            | 00.0<br>00.0         | 0.00         | 0.00     | 0.0               | 0.00          | 0.00          | 0.00     | 0.0      | 000          | 0,00           | 0.00     | 0.00      | 00'0       | 0.00     | 0.00     | 0.00     | 000      | 00.0           |
|              |                                                  |                                                                        | True vertical depta calculation:     | Hole depth (ft)                           | Abova<br>Below                         | utical dopta of bot                                  |                             | 3 Point Moving Averages |                           | (mins)            |              | :        | 000<br>100           | 0.03                | 10.0     | 0.05<br>200    | 0.0                  |              |          | 2 X               | 10.0          | -0.02         | -0.07    |          | <b>1</b> 0.0 | 10.0           | 0.00     |           | 10.0       | -0.02    | 90.06    | 90.0     |          | 600            |
|              |                                                  |                                                                        | Tr                                   | erval<br>Vertical Depth (A) Be            | 57 S                                   | 53.62 Ve                                             |                             | 3 Point                 | Applied Head              | (feet of water)   |              |          | 16.71                | 17.53               | 17.54    | 12.71<br>B2 T1 | 0971                 |              | - 1971   | 92.71             | 17.58         | 12.11         | 97 EL    | 14.11    | 12.51        | 17.59          | 17.56    | 128       | 17.54      | 17.54    | 17.56    | 95.71    | 15 LI    | 12.51          |
|              |                                                  | Straddle packer<br>ewakole                                             | pth calculation:                     | Top of interval<br>Vertical               | 55.00 Above<br>60.00 Balow             | Vertical depth of top of Interval (ft)               |                             |                         |                           |                   |              |          |                      |                     |          |                |                      |              |          |                   |               |               |          |          |              |                |          |           |            |          |          |          |          |                |
|              |                                                  | Test Type:<br>Constant head, Straddlo packer<br>Gauge located downhole | True vertical deptà calculation:     | Hole depth (ft)                           | Above<br>Below                         | Vertical depth of                                    |                             |                         |                           |                   |              |          |                      |                     |          |                |                      |              |          |                   |               |               |          |          |              |                |          |           |            |          |          |          |          |                |
|              |                                                  |                                                                        |                                      |                                           |                                        |                                                      |                             |                         | Applied Head              | (ICCI OI MEICL)   | 17.56        | 17.52    | 17.52                | 17.52               | 17.55    | 17.39          | 17.62                | 17.60        | 17.62    | 17.60             | 17.56         | 17.60         | 151<br>1 | 17.35    | 17.61        | 671<br>551     | 12.54    | 17.54     | 17.56      | 12.1     | 12 10    | 17.62    | 35.71    | •5.71          |
|              |                                                  |                                                                        | inches                               | feet below top of casing                  | feet below top of caring               | feet below top of casing<br>feet below top of casing |                             |                         | Measured Head             | (1018 44 10 1001) | 0.01         | 10.0-    | £0.0-                | £0'0 <del>-</del>   | 000      | 0.04           | 0.07                 | 0.05<br>0.06 | 0.0      | 0.05              | 10:0          | 5010<br>10 0- | -0.02    | 0.00     | 0.06         | 10.07<br>10.02 | -0.02    | 10.0-     | 10.0       | 50 Q     | 10.05    | 0.07     | 10'0     | -0.02          |
|              | le/CSSA                                          |                                                                        | 3.78 1                               |                                           |                                        | 1 00.00<br>1 02.70                                   |                             |                         | Elapsed time<br>(minutes) |                   | 0 2          | 0.12     | 0.18                 | C.0                 | 0.42     | 0.54           | 0.6                  | 0.7k         | 0.84     | 0.96              | 1.02          | 1             | 1.1      | 30.1     | #1           | <u>8</u> 3     | 1.64     | 1.8       | 2 I. IK    | 5 F      | 5 7      | 1.11     | 121      | 134            |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>1 (r)<br>11-Dec-95                                             |                                      | Tep                                       |                                        |                                                      |                             | 14:37:37                | Elapsed time ]<br>(hours) |                   | 00.0<br>01.0 | 00.0     | 00:0                 | 10.0                | 0.01     | 0.01           | 10.0                 | 10.0         | 10.0     | 0.02              | 0.02          | 0.02          | 20.0     | 0.02     | 2010         | 0.0<br>1       | 0.03     | 0.03      | <b>600</b> | (0.0     | 10.0     | 0.04     | 90.0     | <b>1</b> 0.0   |
|              | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radiue | Test section location                     | Length of test interval<br>Gause Benth | Static Water Level                                   | General Lithology<br>Basali | Start Time              | Clock<br>Time             |                   | 14.37.41     | 14:37:44 | 14/37,48<br>14/37,48 | 0070191<br>83-21-71 | 14:38:02 | 14:38:09       | 14:04:13<br>14:04:00 | 14:38:24     | 14:38:27 | 14.38:35          | 14:38:38      | 14:38:49      | 14.38.56 | 14:39:00 | [4:39.03     | 14:39:14       | 14:39:18 | 14(39):25 | 14:39:29   | 60.40.41 | (1.96.41 | 14:39:50 | 14:39:54 | 14:39.57       |

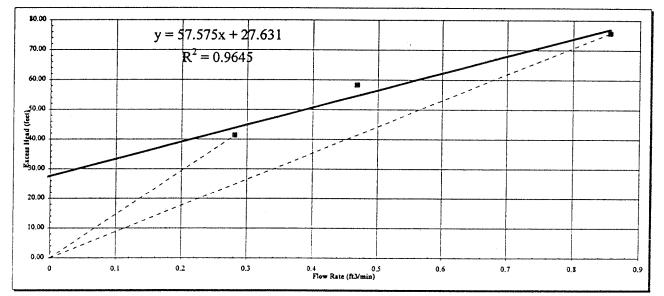
230A01A CHA, hụư Data

**Golder Associates** 

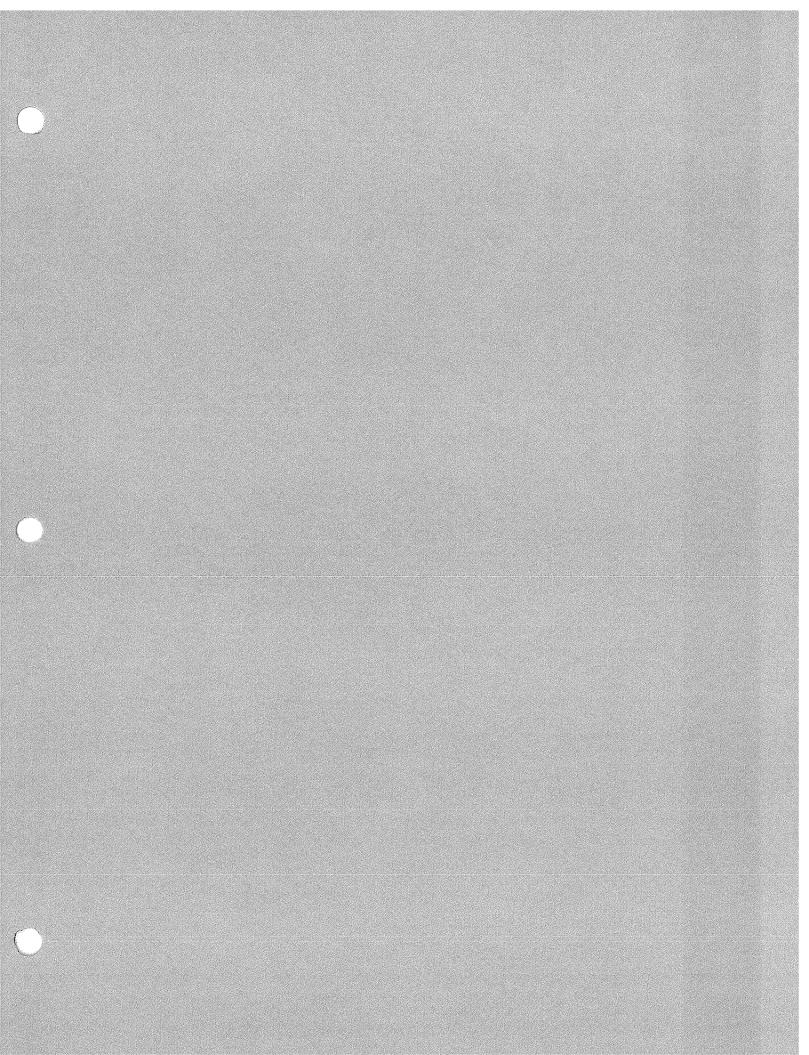
## Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)41.322.10058.243.50075.706.400

i




{

| Ì. | Client      | Morrison-Maierle/CSSA |
|----|-------------|-----------------------|
|    | Site        | Miner Flat            |
|    | Project No. | 943-27691             |
|    |             |                       |

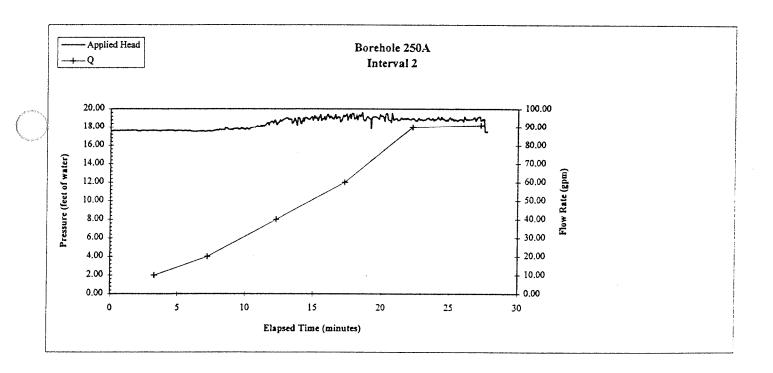

| Borehole        | 250A  |
|-----------------|-------|
| Interval Number | 1 (r) |

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 41.32           | 2.100         | 0.2808                 |
| 58.24           | 3.500         | 0.4680                 |
| 75.70           | 6.400         | 0.8557                 |
|                 |               |                        |
|                 |               |                        |



| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | Q = Flow<br>he = App<br>L = lengt | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |                              |  |  |  |  |  |  |
|------------|-----------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Range of l | hydraulic conductivity                  |                                   |                                                                                                                          |                              |  |  |  |  |  |  |
| K =        | 1.1E-04 cm/s<br>2.2E-04 feet/min        | Q =<br>h <sub>e</sub> =           | 0.281<br>41.32                                                                                                           | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =        | 1.8E-04 cm/s<br>3.6E-04 feet/min        | Q =<br>h <sub>e</sub> =           | 0.856<br>75.70                                                                                                           | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =        | <b>2.8E-04 cm/s</b><br>5.6E-04 feet/min | Trendline Slope                   | 57.58                                                                                                                    |                              |  |  |  |  |  |  |

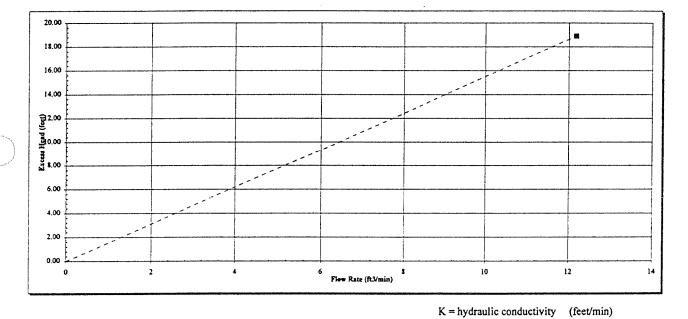



| 0(1.1675-614 |                                                  |                                                                        |                                                                                                                                                                                       | ñ                                         | Average Q<br>(gal/min)           |                    |                    | 0.00           | 80.0               | 8.9              | 000         | 0.00         | 00:00   | 000     | 00.0         | 0.00    | 0.0     | 000     | 000     | 000     | 0.00         | 0000        | 000     | 900<br>000        | 00.0          | 0.00        | 00'0  | 00.0         |  |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------------|--------------------|----------------|--------------------|------------------|-------------|--------------|---------|---------|--------------|---------|---------|---------|---------|---------|--------------|-------------|---------|-------------------|---------------|-------------|-------|--------------|--|
|              |                                                  |                                                                        |                                                                                                                                                                                       | 5 Point Moving Averages                   | ∆ time<br>(minutes)              |                    |                    | 00.00          | 00'0               | 10.0<br>000      | 00.0        | 0.00         | 30      | (0 0    | 0.03         | 10.0    | 000     | 00.0    | 0.00    | 00.00   | 0.00         | 00.0        | 5.9     | 10.0              | 10.0-         | 10.0        | 0.05  | <b>1</b> 0:0 |  |
|              |                                                  |                                                                        | Septh (11)<br>54,99<br>55,84                                                                                                                                                          | 5 Point N                                 | Applied Head<br>(feet of water)  |                    |                    | 17.60<br>17.60 | 17.61              | 17.60            | 17.60       | 17.60        | 13.60   | 17.62   | 17.62        | 17.63   | 1741    | 17.64   | 17.64   | 17.64   | 17.64        | 19761       | 17.61   | 17.60             | 17.58         | 17.58       | 17.54 | 17.39        |  |
|              |                                                  |                                                                        | True vertical depth calculation:<br>Bottom of laterval<br>Hole depth (1) Vertical Depth (1)<br>Above 53.00 Above 5<br>Below 53.00 Below 5<br>Vertical depth of bottom of interval (1) | B.                                        | Average Q<br>(gal/min)           |                    | 0.00               | 00.0           | 00.0               | 00.0             | 00:00       | 00.0         | 00.0    | 0.00    | 0.00         | 8.0     | 000     | 00.00   | 0.00    | 0.00    | <b>8</b> .0  | 00.0        | 00.0    | 0.00              | 0,00          | 00.00       | 0.00  | 0.00         |  |
|              |                                                  |                                                                        | True vertical depth calculation:<br>Bottom<br>Hole depth (ft) 53.00<br>Above 53.00<br>Below 50.00<br>Vertical depth of bottom of inc                                                  | 3 Point Moving Averages                   | Δ time<br>(mins)                 |                    | 0.00               | 9.0<br>0.0     | 0.00               | 8<br>8<br>9<br>9 | 0.00        | <b>10.0</b>  | 8       | 0.01    | 0.03         | 8 8     | 8       | 0.0     | 0.00    | 0.00    | 90.0<br>2    | 80          | 6.67    | -0.0 <del>4</del> | <b>10</b> .0- | 10.0        | 9.0   | 10.0         |  |
|              |                                                  |                                                                        | t: Tr<br>ryal<br>Vertical Depta (ft) Ho<br>Above 29.99 (ft)<br>Bdow (ft) 30.94 Ve                                                                                                     | 3 Point 1                                 | Applied Head<br>(feet of water)  |                    | 65.71              | 19.71          | 17.60              | 17.59            | 17.39       | 95.11<br>    | 17.61   | 17.62   | 17.63        | 17.64   | 17.64   | 17.64   | 17.64   | 17.64   | <b>1</b> 971 | 17,64       | 17.62   | 17.60             | 17.57         | 17,56       | 17.58 | 17.59        |  |
|              |                                                  | addie packer<br>skole                                                  | calculation:<br>Top of interval<br>20.00 Above<br>33.00 Below<br>p of laterval (f)                                                                                                    |                                           |                                  |                    |                    |                |                    |                  |             |              |         |         | 1            |         |         |         |         |         | . to         | 1<br>1<br>1 |         | 1                 |               |             |       |              |  |
|              |                                                  | Test Type:<br>Coustant head, Straddle packer<br>Gauge located dewnhole | True vertical depth calculation:<br>Top of laterval<br>Hole depth (ft) 2000 Above<br>Above 3300 Below<br>Below 3100 Bulow                                                             |                                           | Q.<br>(gal/min)                  |                    |                    |                |                    |                  |             |              |         |         |              |         |         | -<br>Sh |         |         | N.C. (P. 4   |             |         |                   |               |             |       |              |  |
|              |                                                  | 609                                                                    | ÷ ≌₹ă >                                                                                                                                                                               |                                           | Applied Head<br>(feet of water)  | 17.55<br>17.60     | 32.11              | 17.61          | 17.60              | 19/1             | 17.57       | 17.61        | 17 61   | 17.61   | 17.64        | 1971    | 17.64   | 17.64   | 17.64   | 17.64   | 5            | 17.64       | 17.64   | 17.60             | 17.35         | 17.56       | 17.57 | 17.61        |  |
|              |                                                  |                                                                        | inches<br>feet<br>feet below top of <b>casing</b><br>feet below top of <b>casing</b><br>feet below top of <b>casing</b><br>feet below top of <b>casing</b>                            |                                           | Measured Head<br>(feet of water) | 0.00               | 10.0               | 90.0           | 80.0<br>80.0       | 0.06             | 0.02        | 90 0<br>90 0 | 90.0    | 90.0    | 6.0          | 60°0    | 60:0    | 0.09    | 0.09    | 0.09    | 60.0         | 60.0        | 0,09    | 0.03              | 0.00          | 10:0        | 0.02  | 40.0<br>90.0 |  |
|              | elCSSA                                           |                                                                        | 3.78<br>0.16<br>70.75<br>55.85<br>65.585<br>75<br>25.10<br>76<br>25.75<br>62.70<br>62.70                                                                                              |                                           | Elapsed time<br>(minutes)        | 0<br>90:0          | 0.12               | 0.24           | 0.36               | 15.0             | 9.0<br>77 C | 0.78         | 0.84    | 8.0     |              |         | 1.44    | ก       | 8       | 8 3     | 1.64         | •           | 1.16    | 1.98              | 2.04          | 7           |       | 17           |  |
|              | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>2 (r)<br>11-Dec-95                                             | Top                                                                                                                                                                                   | 7:42:44                                   | Elapsed time I<br>(hours)        | 00'0<br>00'0       | 0.00               | 000            | 10.0               | 10.0             | 10.0        | 10.0         | 10.0    | 0.02    | 10.0<br>20.0 | 0.02    | 0.02    | 0.03    | 0.03    | £0,0    | 0.03         | 0.03        | CO.O    | 0.03              | 0.03          | <b>10.0</b> |       | 40.0         |  |
| Sumeri       | Client N<br>Site No. 9<br>Project No. 9          | Borchole 2<br>Test Number 2<br>Test Date 1                             | Borehole diameter<br>Borehole radius<br>Test section location<br>Length of test laterval<br>Gauge Depth<br>Static Water Level                                                         | General Lithology<br>Basalt<br>Start Time | Clock<br>Time                    | 7:42:44<br>7:42:48 | 7.42.51<br>7.42.55 | 7,42.58        | 90.E4.7<br>90.E4.7 | 7:43:16          | 143:20      | ICD/2        | 7:43:34 | 7,43,42 | 7.44.07      | 7.44.07 | 7,44:10 | 7:44:34 | 7:44:35 | 7.44.21 | 7.44.25      | 7,44:32     | 7:44:36 | 7.44:43           | 7.44:46       | 7.44:50     | 10141 | 7.45.04      |  |

**Goldor Associatos** 

250A02A.CHA, higut Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 18.90           | 91.000           |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 250A                  |

Interval Number 2 (r)

### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 18.90           | 91.000        | 12.1667                |
|                 |               |                        |



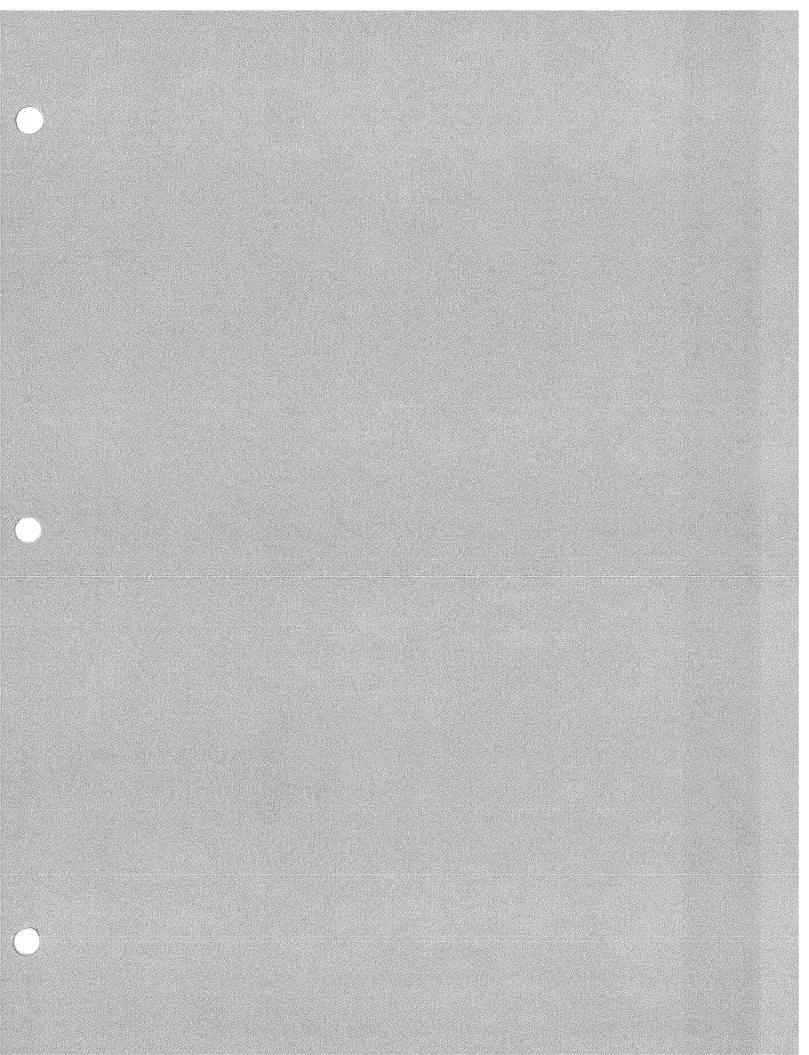
 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

### Range of hydraulic conductivity

| K = | 1.0E-02 cm/s     | Q =              | 12.167 | ft³/min |
|-----|------------------|------------------|--------|---------|
|     | 2.1E-02 feet/min | h <sub>e</sub> = | 18.90  | feet    |

Q = Flow rate

he = Applied head

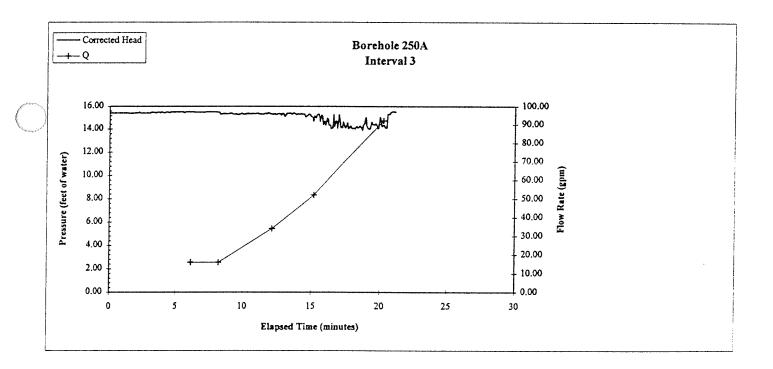

r = borehole radius

L = length of interval tested (feet)

(ft<sup>3</sup>/min)

(feet)

(feet)

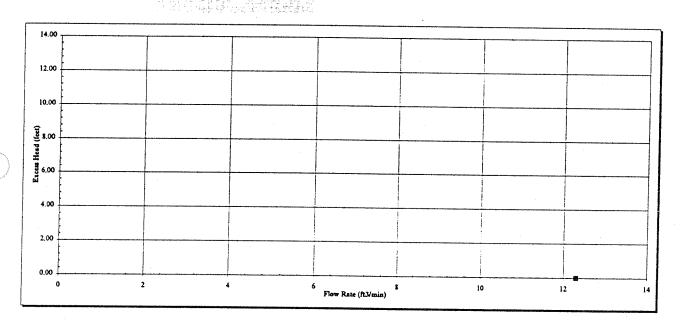



| 061.1972-649 |                                                  |                                                                      |                                  |                                          |                                                              |                                           |                             |                         | Average Q<br>(cal/min)            | ĺ       |              |             | 0.00    | 000         |                    | 0.00           | 0.00        | 800                  |                  | 0:00   | 0.00    | 0.00    | 0.0          | 0.00  | 0.00           | 0.00    | 0.00           | 00.0           | 800          | 000    | 00.00 | 8              | 8            | 0.00             |
|--------------|--------------------------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------|-------------------------------------------|-----------------------------|-------------------------|-----------------------------------|---------|--------------|-------------|---------|-------------|--------------------|----------------|-------------|----------------------|------------------|--------|---------|---------|--------------|-------|----------------|---------|----------------|----------------|--------------|--------|-------|----------------|--------------|------------------|
| z            |                                                  |                                                                      |                                  |                                          |                                                              |                                           |                             | 20<br>20<br>20          |                                   |         |              |             | 0       | 0           | ð e                | ā              | ö           | 8                    | 55               | 0      | 0       | 0       |              | 0.0   | 0.0            | 0       | 5              | 5 6            | ä            | 0      | 0     | 0.0            | 000          | ; ;              |
|              |                                                  |                                                                      |                                  |                                          |                                                              |                                           |                             | 5 Point Moving Averages | Δ time<br>(minutes)               |         |              |             | 0.00    | 00.00       | 8 8                | 0.00           | 0.00        | 0.0                  | 000              | 0.00   | 000     | 0.0     | 6.0.0        | E0:0- | 10.0-          | -0 03   | 0.03           | 0.0            | 0.0          | 000    | 90.0  | 000            | 8            | 90.0F            |
|              |                                                  |                                                                      |                                  | interval<br>Vertical Depth (ft)          | 29.99<br>34.95                                               | 30,84                                     |                             | 5 Point M               | Corrected Head<br>(feet of water) |         |              |             | 15.44   | 15.44       | 13.44              | 15.44          | 13.44       | 13.44                | 13.44            | 15.44  | 13.44   | 1344    | 15,43        | 15.43 | 15.42          | 15.42   | 19,42<br>14,13 | 15.43          | 15.43        | 13.44  | 15.45 | 13.45          | 9 9 9<br>9 9 | 15.65            |
|              |                                                  |                                                                      | b calculation:                   | Bottom of interval<br>Vertical           | 30.00 Above<br>35.00 Below                                   | Vertical depth of bottom of interval (ft) |                             | ığcı                    | Average Q<br>(galmin)             |         |              | 0.00        | 0.00    | 90 00<br>00 | 0.00               | 0.00           | 00 00       | 00.0                 | 00.0             | 0,00   | 000     | 00.0    | 0.00         | 00.00 | 0.00           | 0.0     | 000            | 0.00           | 00.0         | 0.00   | 0.00  | 00.0           | 800          | 000              |
|              |                                                  |                                                                      | True vertical depth calculation: | Hale depth (ft)                          | Above<br>Below                                               | rtical depta of l                         |                             | 3 Point Moving Averages | ∆ time<br>(mim)                   |         |              | 0.00        | 0.00    | 8.8         | 0.0                | 0.0            | 8 8         | 8 8                  | 0.00             | 80     | 88      | 8 8     | 0.00         | 6.03  | 10'0-          | 0.0     | 10.0           | 80             | 0.0          | 0.0    | 0.0   | 9<br>9<br>9    | 20           | 0.0              |
|              |                                                  |                                                                      | ų.                               | erval<br>Vertical Depth (ft) – Ro        | 7, <b>%</b><br>10.00                                         | 1.10 V.                                   |                             | 3 Point                 | Corrected Hea<br>(feet of water)  |         |              | 15.44       | 13.44   | 15.4        | 13.44              | 13.44          | <b>1</b> 74 | 13.44                | 15.44            | 15.44  | 19 44   | 15.44   | 15.44        | 15.43 | 13.42          | 18.61   | 15.42          | 15.43          | 15.44        | 15.44  | 15.44 | 64-51<br>54-51 | 15.46        | 15.44            |
| (            |                                                  | Tet Type:<br>Comtant head, Straddle packer<br>Gauge located dewahele | True vertical depth calculation: | Top of lat                               | 7.50 Above<br>10.00 Below                                    | Vertical depth of top of interval (ft)    |                             |                         | J                                 |         |              |             |         |             |                    |                |             |                      |                  |        |         |         |              |       |                |         |                |                |              |        |       |                |              |                  |
| New York     |                                                  | Teat Type:<br>Constant he<br>Gauge locat                             | True vertica                     | Hole depth (N)                           | Above<br>Below                                               | Vertical dep                              |                             |                         | n Q<br>(gal/min)                  |         |              |             |         |             |                    |                |             |                      |                  |        |         |         |              |       | -              |         |                |                |              |        |       |                |              |                  |
|              |                                                  |                                                                      |                                  |                                          |                                                              |                                           |                             |                         | orrected Hea<br>(feet of water)   | 15.44   | 15.44        | 15.44       | 1       | 15.44       | 1544               | 15.44          | 15,44       | 15.44                | 15.44            | 17 T   | 15.44   | 15.44   | 15.44        | 15.44 | 1541           | 15.43   | 15.41          | 15.44          | 15.44        | 15.44  |       | 15.30          | 15.44        | 15.44            |
|              |                                                  |                                                                      | inch <b>es</b>                   | foot<br>foot below top of caring         | foct below top of curing<br>foct<br>foct below top of curing | feet below top of casing                  |                             |                         | Measured Head<br>(feet of water)  | 0.06    | 0.06         | 90.00<br>20 | 900     | 0.06        | 90.06              | 90 00<br>90 00 | 0.06        | 90.0                 | 0.06             | 0.06   | 0.06    | 0.06    | 0.0          |       | 0'0            | 0.05    | 0.03           | 0.06           | 0.06         | 0.06   | 0.06  | 6.12           | 0.06         | 90.0             |
|              | He/CSSA                                          |                                                                      |                                  |                                          | 30.85<br>22.85<br>4.05                                       | 82.70                                     |                             |                         | Elapsed time<br>(minutes)         | 0       | 90.0         | 0.12        | 5       | 0.72        | 0.78               | 100            | 6.0         | 0.9                  | <b>8</b> .0      | 10     | 1.14    | 71      | 1.26         | 1 3   | 1.56           | 1.62    | 1.68           | =              | 1.86<br>1.00 | 2.04   | 5     | 111            | 2.2K         | <b>H</b> 2       |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>3 (r)<br>12-Dec-95                                           |                                  | Tep                                      | Kottam                                                       |                                           |                             | 8:31:49                 | Elapsed time<br>(hours)           | 0:00    | 0.00         | 0000        | 10.0    | 10'0        | 10.0               | 10.0           | 0.02        | 0.02                 | 0.02             | 0.02   | 0.02    | 0.02    | 20.0<br>20.0 | 0.02  | 0.03           | 0.03    | 0.03           | 0.03           | (0,0         | 0.0    | 10.0  | 0.04           | 0.04         | 10.0             |
| Ibuow        | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                 | Borchole diameter                | Borchole radius<br>Test section location | Length of test interval<br>Gauge Depth                       | Static Water Level                        | Ceneral LAINOLOGY<br>Basalt | Start Time              | Clock<br>Time                     | 8:31:49 | <b>13153</b> | 8.32.00     | 8:32.07 | 26:26:8     | 6.12.30<br>8.11.14 | 60203          | 8:32.43     | 6.32.43<br>1.11 - 41 | 192250<br>192250 | 102054 | 15:20:8 | 10/10/8 | 50150°       | 1111  | 87:82 <b>8</b> | 8.33.26 | 001651         | 13337<br>13334 |              | ISEE I | 10135 | 134,02         | 8.34.06      | 4.0 <del>4</del> |

Golder Associates

250A03A.CHA, Input Data

Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)0.0092.000

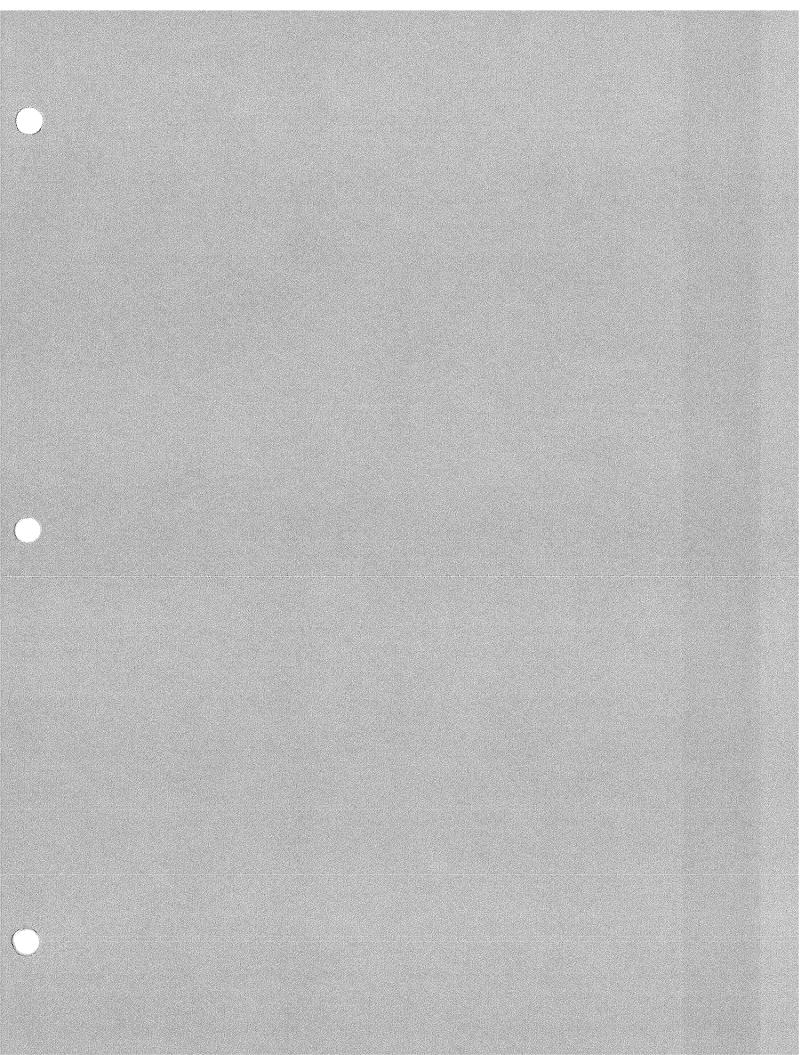



| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole250AInterval Number3 (r)

#### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ff <sup>3</sup> /min) |
| 0.00            | 92.000        | 12.3004                |
|                 |               |                        |

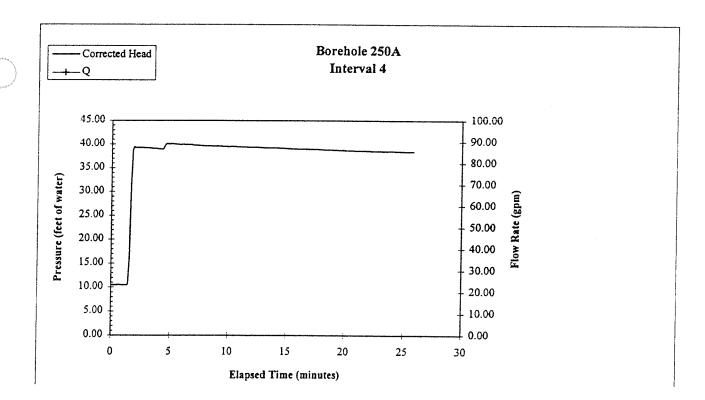



 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

Range of hydraulic conductivity

K = 2.2E+01 cm/s 4.3E+01 feet/min K = hydraulic conductivity(feet/min)Q = Flow rate $(ft^3/min)$ he = Applied head(feet)L = length of interval tested(feet)r = borehole radius(feet)

| Q =              | 12.300 | ft³/min |
|------------------|--------|---------|
| h <sub>e</sub> = | 0.01   | feet    |

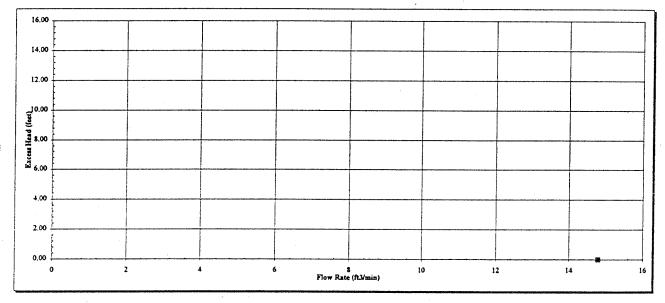



| <b>81192766</b>                                  |                                                                       |                                                                                                  |                                                               |                             | 5 Point Moving Averages | cad A time Average ()<br>er) (minutes) (gal/min) |                    |               | 0.03               |                | 0.05 0.00 |                    |                | 00.0<br>00.0       |         | 0.00 0.00 |       |              |         | 20.30 0.00       |               |                | 22.95 0.00<br># 40 0.00 | 0.47 0.00 |                |                |                |                | 0.00 0.00      |
|--------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-------------------------|--------------------------------------------------|--------------------|---------------|--------------------|----------------|-----------|--------------------|----------------|--------------------|---------|-----------|-------|--------------|---------|------------------|---------------|----------------|-------------------------|-----------|----------------|----------------|----------------|----------------|----------------|
|                                                  |                                                                       | terval<br>Vertical Depth (ft)<br>Above 54.99                                                     | w 59.99                                                       |                             | 5 Po                    | Corrected Head<br>(feet of water)                |                    |               | 10.50              | 10.50          | 10.51     | 10.01              | 10.51          | 10.01<br>02.01     | 10.50   | 10.50     | 10.50 | 10.50        | 10.53   | 13.73            | 96,12         | 27.20          | 12.26                   | 22.90     | 16.96          | 39.26          | 97.60          | 92.9E          | 82.9E<br>82.9E |
|                                                  |                                                                       |                                                                                                  | Below 60.00 Bolow<br>Vertical depth of bottom of interval (f) |                             | 5                       | Average ()<br>(gal/min)                          |                    |               | 0000               | 0.00           | 0.00      | 0.00               | 00.0           | 0.00               | 0.00    | 0.0       | 00.0  | 0.00         | 80 G    | 00.0             | 00.0          | 0,00           | 00.0                    | 00.0      | 0.00           | 0.00           | 0.0            | 000            | 00.0           |
|                                                  |                                                                       | v -s                                                                                             | Vertical depth of be                                          |                             | 3 Point Moving Averages | Δ time<br>(mins)                                 |                    | ł             | 0.0<br>0.0         | 0,00           | 8.0       | 00.00              | 19.19<br>19.19 | 0.00               | 0.00    | 00.0      | 6.00  | 0.0          | 90 G    | 5.71             | <b>30.19</b>  | 22.63<br>1 77  | 1C0                     | 11.0-     | 0.14           | -0.02<br>55    | 5              | 9              | 93 93<br>79 79 |
|                                                  |                                                                       |                                                                                                  | 49.99                                                         |                             | 3 Poin                  | Corrected Hea<br>(feet of water)                 |                    | 97 VI         | 10.50              | 10.50          | 10.52     | 10.52              | - 05.01        | 10.30              | 10.50   | 10.50     | 10.50 | 10.30        | 10.54   | 12.44            | 15.21         | 28.62<br>36 39 | 39.17                   | 26.96     | 39.25          | 39.29<br>20.20 | 67.65<br>07.01 | 67.61<br>62.61 | 67.6E          |
|                                                  | raddie packer<br>vahole                                               | h calculation:<br>Top of interval<br>Vertice<br>45.00 - Above                                    | Bolow 50.00 Bolow<br>Vertical depth of top of interval (ft)   |                             |                         | •                                                |                    |               |                    |                |           |                    |                |                    |         |           | . 4.  |              |         |                  |               |                |                         | 10 J.     | -<br>          |                |                |                | je.            |
|                                                  | Teit Type:<br>Contant bead, Straddie packer<br>Gauge located dowahole | True vertical depth calculation:<br>Top of later<br>Hole depth (ft) 45.00 - 1<br>Abovo 45.00 - 1 | Bolow<br>Vertical depth of 1                                  |                             |                         | Q<br>(gal/min)                                   |                    |               |                    |                |           |                    |                |                    |         |           |       |              |         |                  |               |                |                         |           |                |                |                |                | 1.<br>1<br>1   |
|                                                  |                                                                       |                                                                                                  |                                                               |                             |                         | orrected Ilea<br>(feet of water)                 |                    | 10.47         |                    | 10.50<br>10.10 |           | 10.55              |                |                    | 10.50   |           |       | 10.50        |         |                  | 16.21         |                |                         |           | 39.29          |                |                |                | 72.96          |
|                                                  |                                                                       | inches<br>foet<br>foet below top of casing<br>foet below top of casing                           | rock<br>foct below top of casing<br>foct below top of casing  |                             |                         | Measured Head<br>(feet of water)                 | -0.03<br>          | 00.0-<br>00.0 | 00'0               | 00.0<br>00.0   | 0.00      | 0.03<br>00.00      | 00.0           | 0.0                | 000     | 10.0      | 0:00  | 00.0<br>00.0 | 0.00    | 0.12             | 1/.C<br>0F.0C | 28.34          | 29.02                   | 24.67     | 26.79<br>26.61 | 28.77          | 21.71          | 28,83          | 28.77          |
| rle/CSSA                                         |                                                                       | 3.78<br>0.16<br>5.75<br>5.75<br>5.75                                                             |                                                               |                             |                         | Elapsed time<br>(minutes)                        | 0                  | 0,12          | 0.18               | 0.0<br>8.0     | 0.42      | 0.72<br>0.78       | 0.78           | 918-0<br>19 0      | 1.02    | 1.01      | 1     | 1.26         | 1.11    | 4                | 97'I          | 1              | 1.92                    | 16 1      | 2.04           | 17             | 11             | 2.28           | 234            |
| Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>4<br>12-Dec-95                                                | Tep<br>Bottom                                                                                    |                                                               |                             | 8:31:49                 | Elapsed time<br>(hours)                          | 00.00              | 00.0          | 0.00               | 10:0           | 10:0      | 0.01<br>0.01       | 0.01           | 0.01               | 0.02    | 0.02      | 0.02  | 0.02         | 0.02    | 0.02             | CO'0          | 0.03           | 0.03                    | 0.03      | E0.0           | 0.04           | 0.04           | 0.04           | H0.0           |
| Client<br>Site<br>Project No.                    |                                                                       | Borchole diameter<br>Borchole radius<br>Test section location<br>Leneth of test interval         | Gauge Depth<br>Static Water Level                             | General Lithology<br>Basali | Start Time              | Clock<br>Time                                    | 69/10/8<br>13-11-8 | 95161         | 8:32:00<br>8:33:07 | 1122.1         | 11251     | 8.32.36<br>8.32.36 | 8:32:36        | 8.32,39<br>8.32,43 | 8:32:50 | 132.54    | 10201 | \$0°EC:1     | 1:33:12 | 81363<br>17-11-1 | 05.55.8       | 1,33:37        | +F-CC3                  |           | 15161          | 1:33.55        | 8:34:02        | 8.34.06        | 8:34.09        |

**Goldor Associatos** 

250A04A CHA, Input Data

# M3-2791.130




ţ

Client Morrison-Maierle/CSSA Site Miner Flat Project No. 943-27691 Borehole 250A Test Number 4

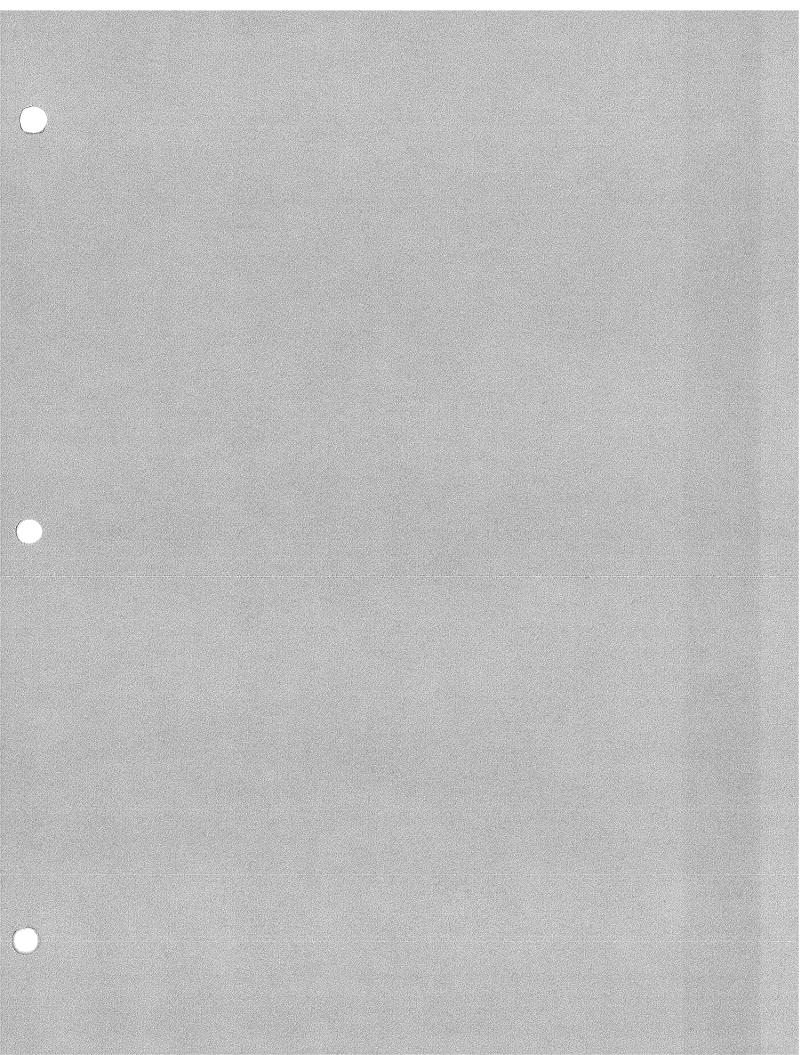
#### Plot data

| Gauge Head      | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 0.00            | 92.000        | 14.7703                |
|                 |               |                        |



 $K = 1/(2\Pi L) \times (Q/h_e) \times \ln (L/r)$ 

- K = hydraulic conductivity
- Q = Flow rate
- $h_e = Excess head$

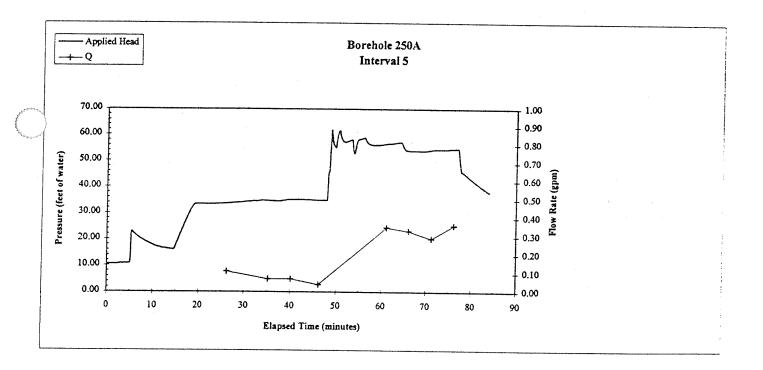

L = length of interval tested

r = borehole radius

#### Range of hydraulic conductivity

K =

9.8E+01 feet/min 4.9E+01 cm/s  $Q = 14.770 \text{ ft}^3/\text{min}$  $h_e = 0.01 \text{ feet}$ 



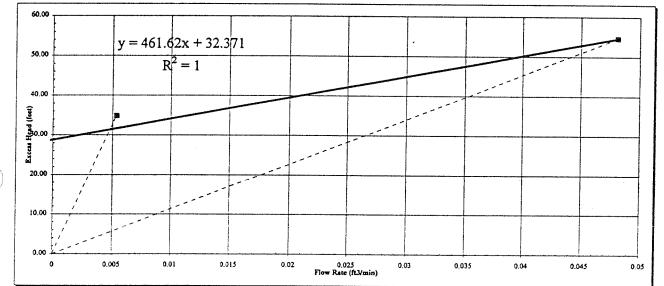

| 0(1.1672-646 |                                                  |                                                                        |                                   |                                           |                             |                                                      |                             |                         | Average Q<br>(sal/min)           |       |                      |                | 0.00              | 8.0                  | 0.0      | 0.00           | 00.0                 | 0.00           | 0.00        | 8.0      | 0.00         | 0.00         | 0.00                 | 000      | 0.00           | 0.00     | 0.0      | 0.0          | 000          | 0.00       | 0.00           | 000          | 0.00          |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------|------------------------------------------------------|-----------------------------|-------------------------|----------------------------------|-------|----------------------|----------------|-------------------|----------------------|----------|----------------|----------------------|----------------|-------------|----------|--------------|--------------|----------------------|----------|----------------|----------|----------|--------------|--------------|------------|----------------|--------------|---------------|
|              |                                                  |                                                                        |                                   |                                           |                             |                                                      |                             | 5 Point Moving Averages | ∆ time<br>(minutes)              |       |                      |                | 90.0              | 600<br>9000          | 0.06     | 90.0           | 000                  | 0.00           | 10.0        | 0000     | 10.01        | 10:0-        | 000                  | 3.9      | 00.00          | 0.00     | 8.9      | 0000<br>0000 | 0.00         | 90.0       | 0.00           | 0.0          | 00'0<br>10'0  |
|              |                                                  |                                                                        |                                   | epth (ft)                                 | £ 3<br>7 9                  | 12.24                                                |                             | 5 Point M               | Applied Head<br>(feet of water)  |       |                      |                | 10.42             | 10.45                | 10.47    | 10.48<br>10.48 | 0.01                 | 10.50          | 05.01       | 05.01    | 10.52        | 10.52        | 10.32                | 10.51    | 10.52          | 10.52    | 10.52    | 05.01        | 10.50        | 10.52      | 10.52          | 10.52        | 10.52         |
|              |                                                  |                                                                        | calculation:                      | Bottom of interval<br>Vertical Depth (ft) | .45.00 Above<br>50.00 Balow | le V                                                 |                             | 3                       | Average Q<br>(gal/min)           |       |                      | 0.00           | 0.00              | 00.0                 | 0.00     | 0.0            | 0,00                 | 0.00           | 000         | 8 8      | 0.00         | <b>0</b> .0  | 000                  | 0.00     | 0.00           | 0.0      | 0000     | 80           | 0.00         | 0.00       | 0.0            | 0.00<br>0.00 | 0.0           |
|              |                                                  |                                                                        | Trwe vertical depits calculation: | Hole depth (R)                            | Above<br>Belove             | rtical depth of be                                   |                             | 3 Point Moving Averages | Δ time<br>(mins)                 |       |                      | 0.05           | 0.05              | 0.0                  | 0.05     | 90.0<br>20     |                      |                | 0.0         | 0.0      | 10.0-        | 90.0<br>20.0 | 30 Q                 | 0.05     | 0.00           | 8        | 3 3      | 8            | 00.0         | 0.0        | 98.0<br>98.0   | 2            | 0.00          |
|              |                                                  |                                                                        | Ţ                                 |                                           | 66'9E                       |                                                      |                             | 3 Point                 | Applied Head<br>(feet of water)  |       |                      | 10.41          | 10.45<br>10 44    | 10.45                | 10.46    | 10.48<br>10.50 |                      | 10.50          | <b>0</b> 11 | 10.51    | 10.51        | 10.01        | 10.01<br>12.01       | 10.52    | 10.52          | 10.01    | 05.01    | 10.30        | 10.50        | 10.50      | 10 52<br>10 52 | 10 ES        | 10.50         |
|              |                                                  | idle packer<br>tole                                                    | alculatios:                       | Top of interval<br>Vertical Depth (ft)    | 35.00 Above<br>40.00 Bolow  | of interval (ft)                                     |                             | 1. Salat 1.             |                                  |       |                      |                |                   |                      |          |                |                      | 1. "L          | 15.         |          |              |              |                      |          |                |          |          |              |              |            |                |              |               |
| ()           |                                                  | Test Type:<br>Constant bend, Straddle packer<br>Gauge locatød døwabole | True vertical depth calculation:  | lepth (A)                                 | Abave<br>Beiow              | Vertical depth of top of interval (ft)               |                             | 1                       | Q<br>(gal/min)                   |       |                      |                |                   |                      |          |                |                      |                |             |          |              |              | -1<br>-1<br>-1<br>-1 |          |                |          |          |              |              |            |                |              |               |
|              |                                                  | Ë Č Ō                                                                  | Ţ                                 | He                                        | 45                          | ž                                                    |                             |                         | Applied Head<br>(feet of water)  | 95.01 |                      | 10.40          | 10.45             | 10.45                | 10.45    | 00.01<br>00.01 |                      | 10.50<br>10.50 |             |          | 97 OT        | 10.51        | 10.50                |          | 20.05<br>04.01 | 3 91     | 10.50    | 10.51        | 10.50        | 10.51      | 2.01<br>97.01  |              |               |
|              |                                                  |                                                                        | inch <b>es</b>                    | foct<br>foct bolow top of casing          | foct below top of casing    | feet below top of casing<br>feet below top of casing |                             |                         | Measured Head<br>(fect of water) | 11.0- | 11:0-                | 01.74<br>90.07 | 50.0 <del>.</del> | -0.0 <del>3</del>    | -0.05    | 90.0<br>10     | 0.00                 | 00.00<br>00.00 | 10.0        | 0.01     | 00:0<br>90:0 | 10.0         | 00.0                 | 0.00     | 0.06<br>0.02   | 00.0     | 00.0     | 0.01         | 0.00         | 10.0       | 90 G           | 0.00         | 0.00          |
|              | le/CSSA                                          |                                                                        |                                   |                                           |                             | 30.25                                                |                             |                         | Elapsed time<br>(minutes)        | ٥     | 80.0<br>51 c         | 0.15           | 0.3               | 90.0                 | 0.42     | 9.0            | 17.0                 | 0.84           | 96.0        | 1.02     | 2            | 14           | 1.44                 | ב        | 8 3            | 1.68     | 1.8      | 1.86         | 1.92         | <b>M</b> 7 | 1 11           | 1.28         | 2.34          |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>5<br>12-Dec-95                                                 |                                   | Tep                                       |                             |                                                      |                             | 10:53:53                | Elapsed time  <br>(hours)        | 00'0  | 000                  | 0.00           | 0.01              | 10:0                 | 10.0     | 10.0           | 10.0                 | 10.0           | 0.02        | 0.02     | 0.02         | 0.02         | 0.02                 | £0:0     | 0.0            | 0.03     | 0.03     | 0.03         | (0.0<br>(0.0 | 60'D       | 10.0           | 0.04         | <b>1</b> 0.04 |
| South        | Client N<br>Site No. 9                           | Borcholc 2<br>Test Number 5<br>Test Date 1                             | Borchole diameter                 | Borcasic radius<br>Test section location  | Length of test interval     | Gauge Depth<br>Static Water Level                    | General Lithology<br>Basalt | Start Thee              | Clock<br>Time                    | 10:53 | 10:53:57<br>10:54 00 | 10.54.04       | 10:54:11          | 10:54:15<br>10:55:10 | 10.54.25 | 10.54.29       | 10.54.36<br>10.54-20 | 10:54:43       | 10:54:51    | 10.54.54 | 10:55:01     | 10.55.19     | 10.33.19             | 10:55:23 | 00:55:01       | 10.55:34 | 10:55;41 | 10:55:45     | 10.55.48     | 96.85.01   | 10.36.06       | 10:56:10     | 0.36.13       |

Golder Associates

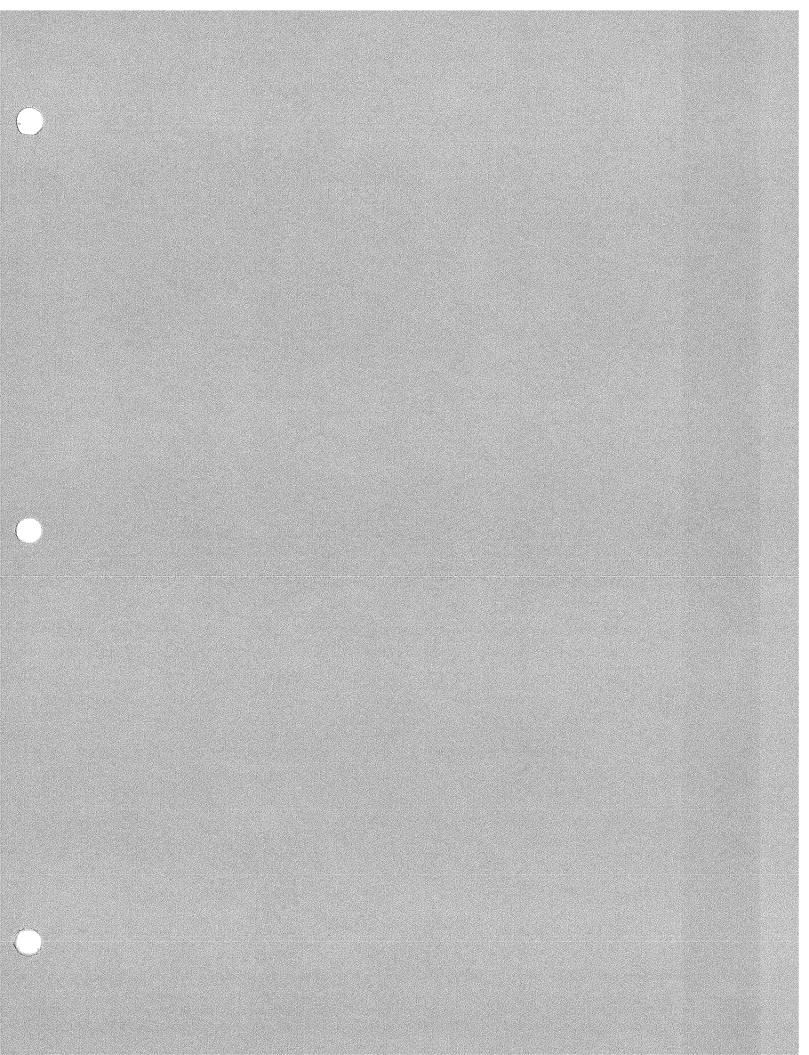
250A05A CHA, Input Data

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)34.840.04054.590.360




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole 250A Interval Number


Plot data

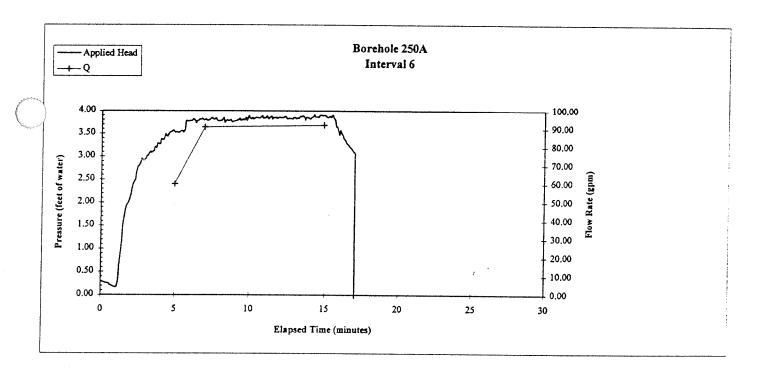
5

| Applied Head<br>(feet of water)<br>34.84<br>54.59 | Flow Rate (Q)<br>(gal/min)<br>0.040<br>0.360                                                                                                                                                                                                                                                                                                            | Flow Rate (Q)<br>(ft <sup>3</sup> /min)<br>0.0053<br>0.0481 |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                   | s a maga a a an                                                                                                                                                                                                                                                                                                                                         |                                                             |
|                                                   | n na serie de la serie de l<br>La serie de la s<br>La serie de la s |                                                             |



| K = 1/(    | 2πL) x (Q/h <sub>c</sub> ) x in (L/r)   | K = hydraulic conducti<br>Q = Flow rate<br>he = Applied head<br>L = length of interval te<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet) |
|------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Range of l | hydraulic conductivity                  |                                                                                                                  |                                  |
| K =        | 5.1E-06 cm/s<br>1.0E-05 feet/min        | $Q = 0.005 \text{ ft}^{3/3}$<br>$h_e = 34.84 \text{ feet}$                                                       |                                  |
| K =        | <b>2.9E-05 cm/s</b><br>5.8E-05 feet/min | $Q = 0.048 \text{ ft}^3/\text{n}$<br>$h_e = 54.59 \text{ fect}$                                                  |                                  |
| K =        | 7.3E-05 cm/s<br>1.4E-04 feet/min        | Trendline Slope 461.62                                                                                           |                                  |



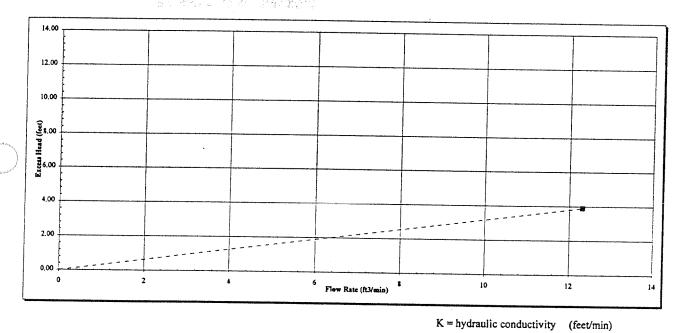

| 0(1,1975-014            |                                                  |                                                                        |                                      |                                        |                                        |                                                      |                             | 2                       | Average Q                        | (gal/min)       |          |          |         | 0.00          | 00.0     | 0.00     | 0.00             | 00.0<br>00.0  | 00.0           | 0.00         | 0.00         | 0.00                 | 0.00     | 0.00  | 000        | 00:0     | 000      | 00.0  | 0,00                 | 0.00       | 0.0             | 000          | 800         | 0.00         | 0.00  |
|-------------------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------|-------------------------|----------------------------------|-----------------|----------|----------|---------|---------------|----------|----------|------------------|---------------|----------------|--------------|--------------|----------------------|----------|-------|------------|----------|----------|-------|----------------------|------------|-----------------|--------------|-------------|--------------|-------|
| $\langle \dots \rangle$ |                                                  |                                                                        |                                      |                                        |                                        |                                                      |                             | 5 Point Moving Averages | Δ time                           | (minutes)       |          |          |         | 10.0          | 6.6      | 90.04    | 90.07<br>90.07   | 10.0-<br>0.0- | <b>1</b> 0.0-  | <b>1</b> 0.0 | 0.11         | 0.14                 | 1.01     | 1.20  | 1.07       | - 0 To   | 05.0     | tc.o  | PC:0                 | 60         | 0.40            | 0.12         | 76.0        | 0,40         | 20.32 |
|                         |                                                  |                                                                        |                                      | interval<br>Verifical Dariek (23)      | 34.99                                  | 6.6                                                  | 47.86                       | 5 Point M               | Applied Head                     | (feet of water) |          |          | :       | 0.28<br>7.7.0 | 0.26     | 0.25     | 0.24             | 0.21          | 0.19           | 0.18         | 62.0         | 0.46                 | 0.66     | £6 0  | 1          | 1.66     | 1.80     | 16.1  | 2.00                 | 2.09       | 2.18            | 15           | 2.46        | 2.56         | 2.64  |
|                         |                                                  |                                                                        | i calculation:                       | Bottom of interval<br>Vertical 1       | 35.00 Above                            | Vertical dents of hostons of internet (2)            | 11) IEICLAN (11)            | 2                       | Average Q                        | (gal/min)       |          |          | 00.00   | 8.9           | 0,00     | 0.00     | 00.0             | 00:0          | 0.0            | 000          | 00.00        | 00.0                 | 0.00     |       | 0.0        | 0.00     | 0.00     | 00.00 | 0.00                 | 0.00       | 0.00            | 0.00         | 0.00        | 0.00         | 0.00  |
|                         |                                                  |                                                                        | True vertical depth calculation:     | Hole denth (ft)                        | Above                                  | utical dants of h                                    |                             | 3 Point Moving Averages | A time                           | (mins)          |          | 1        |         | 10.0          | 10.0-    | 10.0     | 8.9              |               | 10.0-<br>10.0- | 1 10         | 0.13         | 0,49                 | 110      | 649   | 6.9        | 85.0     | 0.21     | 0.15  | 0 10<br>0            | 52.0       | 0.21            | 0.19         | 0.11        | 0.15         | 0.0   |
|                         |                                                  |                                                                        |                                      |                                        |                                        |                                                      |                             | 3 Point                 | Applied Head                     | (leet of water) |          | 9L 0     | 87.0    | 0.27          | 0.26     | 0.26     | 11.0             |               | 610<br>810     | 0.17         | 0.21         | 0.37                 | 56.0     | 11    | 1.47       | 1.69     | 1        | 6     | 2.07                 | 2.17       | 2.29            | 16.2         | 246         | 14           | Co.7  |
|                         |                                                  | raddle packer<br>wakola                                                | ih calculation:                      | Top of laterval<br>Vertical Depth (ft) | 23.00 Above<br>30.00 Below             | Vertical depth of top of interval (1)                |                             |                         | × s                              |                 |          |          | · ·     |               |          |          |                  |               |                |              |              |                      |          |       |            |          |          |       |                      |            |                 |              |             |              |       |
| (second                 |                                                  | Test Type:<br>Courtant head, Straddle packer<br>Gives located dawnhola | True vertical depth calculation:     | Hale depth (R)                         | Above<br>Bciow                         | 'ertical depth of I                                  |                             | 1                       | Q<br>(nim)n)                     |                 |          |          |         |               |          |          |                  |               |                |              |              |                      |          |       |            |          |          |       |                      |            |                 |              |             |              |       |
|                         |                                                  | - 0 0                                                                  | F                                    | -                                      | < 1                                    | -                                                    |                             |                         | Applied Head<br>(feet of water)  |                 | 10.0     | 0.29     | 0 28    | 0.27          | 0.16     | 52.0     | 0.21             | 07.0          | 91.0           | 0.17         | 0.17<br>0.10 | 0,66                 | 1.01     | 1.18  | 8          |          | 4        | 2.00  | 2.04                 | 2.18       | 2.28            | 45.2<br>74.5 | 87          | 2.65         |       |
|                         |                                                  |                                                                        | inches                               | feet below top of casing               | reet below top of casing               | feet below top of casing<br>feet below top of casing |                             |                         | Measured Head<br>(feet of water) | -               | 61'n-    | 12.0-    | -0.22   | [7:0-         | 10.0     | -0.25    | 67. <del>0</del> | 16.0-         | 26.0-          | [[.]]        | 02.0         | 0.16                 | 0.51     | 89.0  | 001        | 1        | 141      | 05.1  | 1.54                 | 1.64       | 1. /1<br>1. 110 | 1.97         | 2.00        | 2.15         |       |
|                         | 1e/CSSA                                          |                                                                        | 3.78                                 |                                        |                                        | 10.23<br>12.70                                       |                             |                         | Elapsed time<br>(minutes)        | a               | 90.0     | 0.12     | 0.18    | 6.96          | 0.42     | 0.54     | 0.6              | 0.75          | 0.54           | 9. G         | E            | 1.2                  | <u> </u> | 17.1  | <u>.</u> 3 | 1.62     | 1.68     | 1.1   | <b>3</b>             | 161<br>101 | 51              |              | 2.28        | 2.34         |       |
|                         | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>6<br>12-Dec-95                                                 |                                      | Tep                                    |                                        |                                                      |                             | 13:12:07                | Elapsed time  <br>(hours)        | 0010            | 0.00     | 0.00     | 000     | 10.0          | 10.0     | 10.0     | 10.0             | 0.01          | 10.0           | 0.02         | 0.02         | 0.02                 | 70'a     | 0.02  | [0.0       | 0.03     | 0.03     | 0.0   | (0.0<br>10.0         | (0.0)      | 10.0            | 0.04         | <b>M</b> 00 | <b>H</b> 0:0 |       |
| ere ere                 | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borehole diameter<br>Borehole radius | Test section location                  | Length of test interval<br>Gauss Dents | Static Water Level                                   | General Lithology<br>Basalt | Start Time              | Clock<br>Time                    | 13:12:07        | 13:12:11 | 13:12:14 | 0.12:25 | 13:12:29      | 11.11.21 | 13:12:39 | 1011.50          | 13.12.54      | 13:12:37       | 10.61.61     | 13:03:05     | 13:13:19<br>13:11:12 | 13:13:20 | a a a | 13-13-41   | 13:13.44 | 19:61:61 | 2011  | 40:01:01<br>90:01:01 | 13:14:09   | 11.11.11        | 13,14,20     | 13.14.24    | 13:14:27     |       |

**Golder Associates** 

250A06A.CHA, Input Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 3.90            | 92.000           |

i




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole 250A Interval Number 6

#### Plot data

| Applied Head<br>(feet of water) | Flow Rate (Q)<br>(gal/min) | Flow Rate (Q)<br>(ft <sup>3</sup> /min) |
|---------------------------------|----------------------------|-----------------------------------------|
| 3.90                            | 92.000                     | 12.3004                                 |
|                                 |                            |                                         |



#### Range of hydraulic conductivity

| K = | 1.1E-01 cm/s     | Q =  | 12.300 | ft <sup>3</sup> /min |
|-----|------------------|------|--------|----------------------|
|     | 2.1E-01 feet/min | h. = |        |                      |

Q = Flow rate

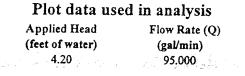
he = Applied head

r = borehole radius

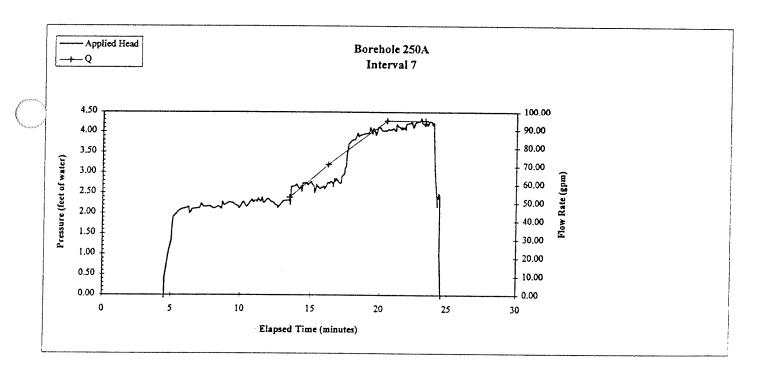
L = length of interval tested (feet)

(ft<sup>3</sup>/min)

(feet)


(feet)



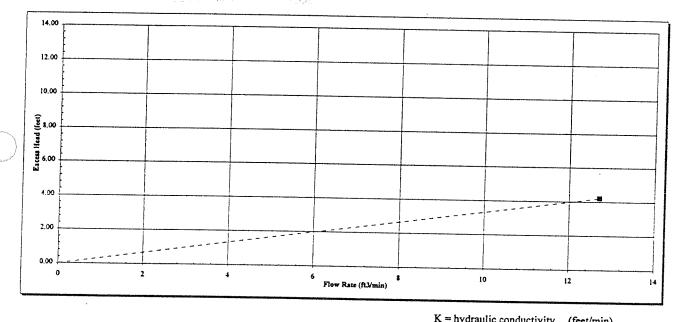

| 1                                                                                                                            |                                                                            |                                                           |                                                                                                                                |                                                                                 |                                                                                                                       |                                                        |                                                                                             |                                                                                |                                                               |                               |              |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|--------------|
| No.<br>Lie<br>Lie<br>Linber                                                                                                  | Morriuon-Malerle/CSSA<br>Miner Flat<br>943-27691<br>250A<br>7<br>13-Dec-95 | erle/CSSA                                                 |                                                                                                                                | F 0 9                                                                           | Tei Type:<br>Conian head, Straddie packer<br>Gauge locatod døwahøie                                                   |                                                        |                                                                                             |                                                                                |                                                               |                               |              |
| Borehole diameter<br>Borehole radiya<br>Test action location<br>Length of test interval<br>Gauge Depth<br>Static Water Level | Top<br>Bollom                                                              | 87.6<br>0.16<br>77.81<br>27.81<br>00.01<br>22.62<br>22.62 | inches<br>foet<br>foet below top of caaing<br>foet below top of caaing<br>foet below top of caaing<br>foet below top of caaing | L IS .                                                                          | Truc vertical depth calculation:<br>Top of laterval<br>Hole depth (ft) Vertic<br>Above 13.00 Above<br>Bdow 20.00 Bdow | al<br>srtiteal Depth (r)<br>bore 15.00<br>dow 20.00 cm | True vertical depth calculation:<br>Bottom<br>Hole depth (ft)<br>Abore 21.00<br>Below 20.00 | calculation:<br>Bottom of Interval<br>Vertical 1<br>21.00 Above<br>30.00 Below | listerval<br>Vertical Depth (f)<br>Above 25.00<br>Below 29.99 |                               |              |
| General Lithology<br>Basalt<br>Start Time                                                                                    | 13:41:48                                                                   |                                                           |                                                                                                                                |                                                                                 |                                                                                                                       |                                                        | Vertical depth of botto<br>3 Point Moving Averages                                          | Vertical depth of bottom of interval (ft)<br>at Moving Averages                | 25.75<br>5 Point M                                            | 15<br>5 Point Moving Averages | _            |
| Clock<br>Time                                                                                                                | Elapsed time<br>(hours)                                                    | Elapsed time<br>(minutes)                                 | Measured Head<br>(feet of water)                                                                                               | Applied Head<br>(feet of water)                                                 | Q<br>(gal/min)                                                                                                        | Applied Head<br>(feet of water)                        | Δ time<br>(mins)                                                                            | Average Q<br>(gal/min)                                                         | Applied Head<br>(feet of water)                               | Δ time                        | Average Q    |
| 124124<br>124152<br>124155                                                                                                   | 00.0<br>00.0<br>00.0                                                       | 0<br>90.0                                                 | -0.02<br>-0.02                                                                                                                 | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2 |                                                                                                                       |                                                        | •                                                                                           | ,<br>9                                                                         |                                                               | (                             | (mm/r=2)     |
| 11.41.59<br>11.41.59                                                                                                         | 00.0                                                                       | 81 O                                                      | -0.02<br>-0.02                                                                                                                 | -23                                                                             |                                                                                                                       | 1.1.<br>1.1.                                           | 0.0                                                                                         | 00.0<br>00.0                                                                   | 81                                                            | 000                           | 8            |
| 13:42:10                                                                                                                     | 10.0                                                                       | 9(.0                                                      | 10 <sup>.</sup> 0                                                                                                              | -251                                                                            |                                                                                                                       | 87<br>197                                              | 0.0<br>0.0                                                                                  | 0.00                                                                           | 5 5 5                                                         | 90 0                          | 00.0         |
| 13:42:20                                                                                                                     | 10:0                                                                       | 57 F                                                      | -0.01<br>20.02                                                                                                                 | -2.51                                                                           |                                                                                                                       | -1.51                                                  | 10.0-                                                                                       | 8.0                                                                            | 177<br>177                                                    | 00.0                          | 00.0<br>00.0 |
| 13:42:24<br>11:42:41                                                                                                         | to:0                                                                       | 9.0                                                       | 10.0-                                                                                                                          | 12                                                                              |                                                                                                                       | 4<br>4<br>7                                            | 00.0<br>00.0                                                                                | 0.0<br>00.0                                                                    | -252<br>-252                                                  | 0.00                          | 000          |
| 13.42.35                                                                                                                     | 10.0                                                                       | 0.72<br>87.0                                              | -0.02<br>-0.02                                                                                                                 | 2.52                                                                            |                                                                                                                       |                                                        | 10.0-                                                                                       | 0.00                                                                           | 1 7                                                           | 10.0-                         | 00.0         |
| 13:42:56<br>11:43:40                                                                                                         | 0.02                                                                       | M                                                         | 60.0-                                                                                                                          | 1.1                                                                             |                                                                                                                       | 151-<br>121-                                           | 10:0-<br>09:0                                                                               | 0.00                                                                           | 2.5                                                           | 10:0-                         | 0.00         |
| HOLEFEL                                                                                                                      | 0.02                                                                       | 21<br>97 1                                                | -0.02<br>-0.02                                                                                                                 | -2.52                                                                           |                                                                                                                       | -1.52                                                  | 0.0                                                                                         | 000                                                                            | រុះ                                                           | 90°0                          | 0.00         |
| 13:43.04                                                                                                                     | 0.02                                                                       | 1.26                                                      | £0:0-                                                                                                                          | ដ                                                                               |                                                                                                                       | 1.12<br>1.12                                           | 8 8<br>8 8                                                                                  | 08.0                                                                           | -15                                                           | 0.60                          | 0.00         |
| 10:00:01<br>13:43:07                                                                                                         | 0.02<br>6.02                                                               | 1.12                                                      | (0.0)<br>(0.0)                                                                                                                 | -2.53                                                                           |                                                                                                                       | -2.52                                                  | 8.9                                                                                         | 00.0                                                                           | 1<br>1<br>1                                                   | 00.0<br>00.0                  | 000          |
| 13:43:11                                                                                                                     | 0.02                                                                       | #C1                                                       | (0 <sup>.</sup> 0                                                                                                              | 17<br>17                                                                        |                                                                                                                       | -2.52                                                  | 0.00                                                                                        | 0.00                                                                           | -2.51                                                         | 0.00                          | 0.0          |
| 11:69:01                                                                                                                     | 0.02                                                                       | 1.44                                                      | £0.0-                                                                                                                          | , tj                                                                            |                                                                                                                       | 167-<br>167-                                           | 8 8                                                                                         | 8.0                                                                            | -1.51                                                         | 0.00                          | 0.00         |
| 13.0.22                                                                                                                      | (0)0                                                                       | 36.1                                                      | - (0'D                                                                                                                         | -2.51                                                                           |                                                                                                                       | 15.5-                                                  | 8.9                                                                                         | 000                                                                            | 167                                                           | 8 3                           | 0.00         |
| 13:43.29                                                                                                                     | (0)D                                                                       | 1.62                                                      | (0.0)                                                                                                                          | -1.5                                                                            |                                                                                                                       | -2.53                                                  | 0.0                                                                                         | 0.0                                                                            | 11                                                            | 90°0                          | 800          |
| 96.64.61                                                                                                                     | 0.03                                                                       |                                                           | (0)7-                                                                                                                          | 15.5                                                                            |                                                                                                                       | -2.53                                                  | 0.00                                                                                        | 00'0                                                                           | .2.53                                                         | 00:00                         | 0.0          |
| 13:43.40                                                                                                                     | CO 0                                                                       | 91.1                                                      | (0.0                                                                                                                           |                                                                                 |                                                                                                                       | -2.53                                                  | 00.0                                                                                        | 00.0                                                                           | -2.53                                                         | 0.00                          | 0.00         |
| 0.43.47                                                                                                                      | 0.03                                                                       | 1.98                                                      | -0.UJ                                                                                                                          |                                                                                 |                                                                                                                       | 67-<br>7                                               | 90-00<br>00-00                                                                              | 0.00                                                                           | 5.5                                                           | 0.00                          | 0.00         |
| 13:43:50                                                                                                                     | 0.03                                                                       | 2.04                                                      | £0.0 <del>3</del>                                                                                                              |                                                                                 |                                                                                                                       | 3                                                      | 90°0                                                                                        | 00 0<br>00 0                                                                   | 5.5                                                           | 00.0                          | 0.00         |
| 13:43:34                                                                                                                     | 10.0                                                                       | 77                                                        | £0.0-                                                                                                                          |                                                                                 |                                                                                                                       | Ş                                                      | 80.0                                                                                        | 0.0                                                                            | 157-<br>15 C                                                  | 000                           | 80           |
| 10.44.01                                                                                                                     | 10.0                                                                       | 2.22                                                      | E0.0-                                                                                                                          |                                                                                 | -                                                                                                                     | ۲.<br>۲                                                | 900                                                                                         | 000                                                                            |                                                               | 0.0                           | 000          |
| 10.44.01                                                                                                                     | 0.04                                                                       | 2.26                                                      | -0.03                                                                                                                          |                                                                                 |                                                                                                                       | 61-                                                    | 0.00                                                                                        | 0.0                                                                            | 16.2-                                                         | 00.0                          | 0.00         |
|                                                                                                                              | 5                                                                          | ţ                                                         | E0.0-                                                                                                                          | -2.53                                                                           |                                                                                                                       | -2.53                                                  | 0.00                                                                                        |                                                                                |                                                               | 20.2                          |              |

**Golder Associated** 

250A07A CHA, hput Data

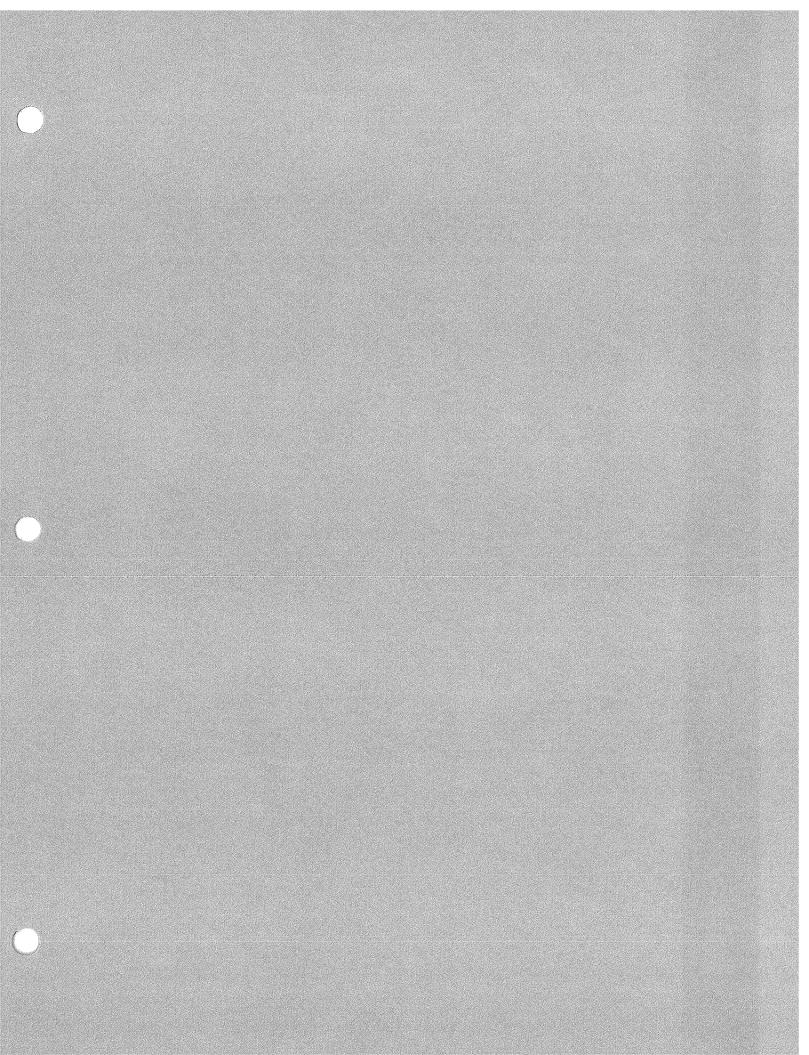


i




ClientMorrison-Maierle/CSSASiteMiner FlatProject No.943-27691

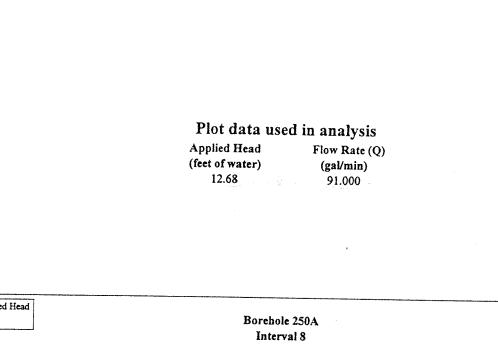
Borehole 250A Interval Number 7

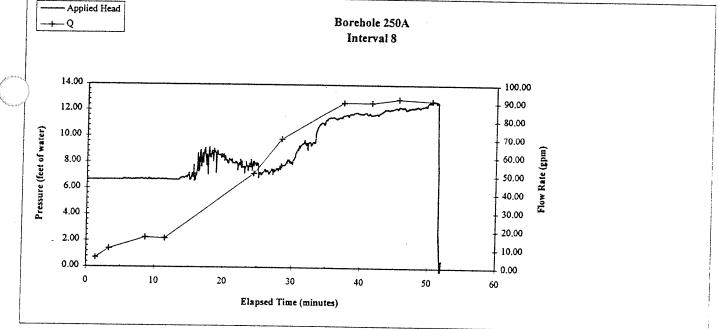

#### Plot data

| Applied Head<br>(feet of water) | Flow Rate (Q)<br>(gal/min) | Flow Rate (Q)<br>(ft <sup>3</sup> /min) |
|---------------------------------|----------------------------|-----------------------------------------|
| 4.20                            | 95.000                     | 12.7015                                 |
|                                 |                            |                                         |



| K = 1/0  | $(2\pi L) \times (Q/h_e) \times \ln (L/r)$ | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                     |                                                                                                                          |                                                                    |
| K =      | 1.0E-01 cm/s<br>2.0E-01 feet/min           | $Q = 12.702 \text{ ft}^3/\text{min}$<br>$h_e = 4.20 \text{ feet}$                                                        |                                                                    |


Page 1 of 1




| 0E1.1675-EM                                      |                                                  |                                                                        |                                      |                                  |                                                             |                                           |                      |                                | Average Q                           | (gal/min)       |             |              | 0.00                 | <b>00</b> .0 | 00.0         | 0.00        | 0.00          | 8.0          | 0.00     | 0.00        | 0.00         | 001      | 1.00         | 90 <sup>-1</sup> | 8        | 8.0          | 80.0         | 00.0                 | 0.00         | 0.00         | 000      | 0.00          | 00.0          |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------------------------------|-------------------------------------------|----------------------|--------------------------------|-------------------------------------|-----------------|-------------|--------------|----------------------|--------------|--------------|-------------|---------------|--------------|----------|-------------|--------------|----------|--------------|------------------|----------|--------------|--------------|----------------------|--------------|--------------|----------|---------------|---------------|
| $\left( \begin{array}{c} \\ \end{array} \right)$ |                                                  |                                                                        |                                      |                                  |                                                             |                                           |                      | 5 Point Moving Averages        | Δ time                              | (minutes)       |             |              | 9-0 <del>1</del>     | 10 0<br>90   | 10.0         | 0000        | 10.0          | 10.0         | 0.02     | 0:00        | <b>10</b> .0 | 10.0     | 00.0         | 6.04             | 00.0     | <b>00</b> 00 | 00.0         | 0.04                 | 000          | 000          | 00.0     | 0.0           | 10:0-<br>00:0 |
|                                                  |                                                  |                                                                        |                                      | Tuterval<br>Vertical Death (6)   | 89.02<br>80.02                                              | 13.73                                     |                      | 5 Point Me                     | Applied Head                        | (ICCI OF MARCE) |             |              | 6.62                 | 6.62<br>6.63 | <b>6</b> .64 | <b>3</b> .9 | 40.0<br>8.6.4 | 59' <b>9</b> | 6.64     | 6.64        | 9 (9)        | 6,63     | 6.63         | (79)<br>777      | 2.3      | 6,65         | 6.65         | 6.65                 | 6.65<br>6.65 | 665          | 6.65     | 6.65          | 6.64<br>5.62  |
|                                                  |                                                  |                                                                        | b calculation:                       |                                  | 15.00 Above<br>20.00 Below                                  | Vertical depth of bottom of laterval (ft) |                      | la.                            | Average Q<br>(sal/min)              |                 |             | 0.00         | 00.0                 | 000          | 0.00         | 00.0        | 000           | 0.00         | 0.00     | 0.00        | 000          | 0.00     | 1.67         | 1.67             | 0.00     | 0.00         | 0.00         | 0.0                  | 0.00         | 0.00         | 0.00     | 0.00          | 0.0<br>0.0    |
|                                                  |                                                  |                                                                        | True vertical depth calculation:     | Hole denth (ft)                  | Above<br>Below                                              | ertical depth of b                        |                      | <b>3 Point Moving Averages</b> | Δ time<br>(mins)                    |                 |             | 10.0         | 90.0<br>10           | 10.0         | 10.0         | 8.0         | 10.0          | 10:0         | 0.00     | 2<br>7<br>7 | 0.0          | 10.0     | <b>10</b> .0 | 1 8              | 10.0     | 00.0         | 10:0         | 8 8                  | 0.0          | 0.00         | 0.00     | 0.00          | 10.0-         |
|                                                  |                                                  |                                                                        | , <b>,</b>                           | erval<br>Vertical Depth (ft) H   |                                                             | s.75 V                                    |                      | 3 Point                        | Applied Head<br>(feet of water)     | •               |             | 99.9         | 0.01<br>( 63         | 19:9         | 6.64<br>2    | 2.0<br>23   | 6.65          | 6.65         | 6.65     | 50 S        | 6.62         | 6.62     | 6.62<br>6.62 | 6.63             | 6.64     | 6.64         | <b>1</b> 0.8 | 0.03<br>0.65         | 6,65         | 6.65         | 6.65     | 6.65<br>A 4.4 | 23.9          |
|                                                  |                                                  | Test Type:<br>Coastaat head, Straddie packer<br>Gauge located dewahole | True vertical depth calculation:     | Top of int                       | 10.00 Below                                                 | Vertical depth of top of interval (ft)    |                      |                                | Q<br>(gal/min) (1                   |                 |             |              |                      |              |              |             |               |              |          |             |              |          | <b>5.0</b>   |                  |          |              |              |                      |              |              |          |               |               |
|                                                  |                                                  | Test Type:<br>Constant h<br>Gauge loca                                 | True ve                              | Hole depth (N)                   | Above<br>Below                                              | Vertical                                  |                      |                                | Applied Ilead<br>(fect of water) (g | 6.64            |             | 6.60<br>6.61 | 6.64                 | 6.64<br>2.52 | 6,63         |             |               | 6.65 c       |          |             | 6.65         | 10.0     |              |                  |          | 10.0         |              |                      |              |              | 0 0 0    |               |               |
|                                                  |                                                  |                                                                        | inch <b>es</b>                       | foct<br>fect below top of casing | rea below top of caning<br>feet<br>feet below top of casing | feet below top of caring                  |                      |                                | Mcasured Head<br>(fect of water)    | <b>0.04</b>     | 00.00       | 10:0         | 0.04                 | 10.0<br>10.0 | 0.05         | 6.04        | 0.04          | 0.0<br>20.0  | 0.05     | 10.0        | 0.05         | 10.0     | 0.05         | 0.05             | 0.05     | 0.05         | 0.05         | 0.05                 | 0.05         | 20.0<br>20.0 | 0.05     | 0.05          | 0.01          |
|                                                  | rle/CSSA                                         |                                                                        | 3.78                                 |                                  | 10.00                                                       | 82.70                                     |                      |                                | Elapsed time<br>(minutes)           | 0               | 0.06        | 81.0         | C.0                  | 0.42         | 0.54         | 9.0         | 0.72<br>0.78  | 10           | 0.96     | 1.02        |              | 1.26     | 10.1         | 1.4              | 162      | 161          |              | 98 -                 | 1.92         | 222          | 462      | 1.34          | 2.4           |
|                                                  | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 250A<br>8<br>12-Dec-95                                                 |                                      | Tap                              |                                                             |                                           | 14:19:39             |                                | Elapsed time<br>(hours)             | 0.00            | 00.0<br>000 | 0,00         | 10.0                 | 10.0         | 10.0         | 10.0        | 10.0          | 10.0         | 0.02     | 0.02        | 0.02         | 0.02     | 0.02         | 0.02             | 1010     | £0:0         | 0.03         | 0.03<br>20.0         | 60 O         | 10.0         | 0.04     | 10.01         | 9.0           |
| ACTIVITY OF THE OF                               | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borehole diameter<br>Borehole radius | Test section location            | Length of test interval<br>Gauge Depth                      | Static Water Level<br>General Lithology   | Basalt<br>Start Time |                                | Clock<br>Time                       | 14:19:39        | 14:19:46    | 14,19:50     | 14.19.57<br>14.20.01 | 14.20.04     | 14:20:11     | 14:20:15    | 14.20.26      | 14:20:29     | 14.20.37 | 14:20:40    | 14-20:51     | 14:20:55 | N-21:02      | 14:21:09         | 14:21:16 | 14:21:20     | 14:21:27     | 14.21:31<br>14:21:34 | 14:21:41     | 14:21:36     | 14:21:59 | 14:21:59      | 14:22:03      |

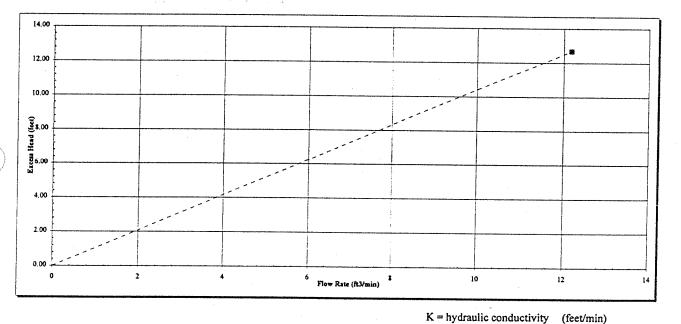
**Goldor Associates** 

250A0#A.CHA, liqui Data





( ·


| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole250AInterval Number8

Plot data

| Applied Head    |
|-----------------|
| (feet of water) |
| 12.68           |

Flow Rate (Q) (gal/min) 91.000



Flow Rate (Q)

(ft<sup>3</sup>/min)

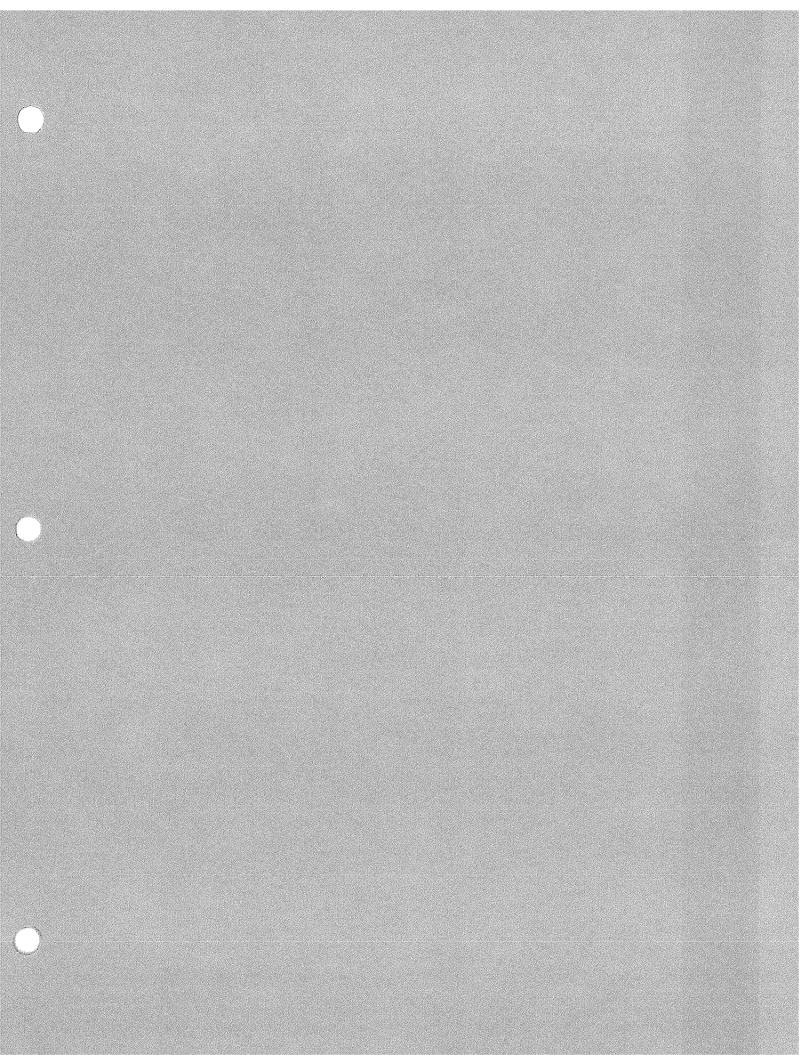
12.1667

 $K = 1/(2\pi L) x (Q/h_e) x \ln (L/r)$ 

Range of hydraulic conductivity

K = 3.2E-02 cm/s Q = 6.3E-02 feet/min  $h_e =$ 

he = Applied head(feet)L = length of interval tested(feet)r = borehole radius(feet)


12.167 ft<sup>3</sup>/min

12.68 feet

(ft<sup>3</sup>/min)

Q = Flow rate

| 250A08A.CHA, | ĸ | calculation |
|--------------|---|-------------|
|--------------|---|-------------|

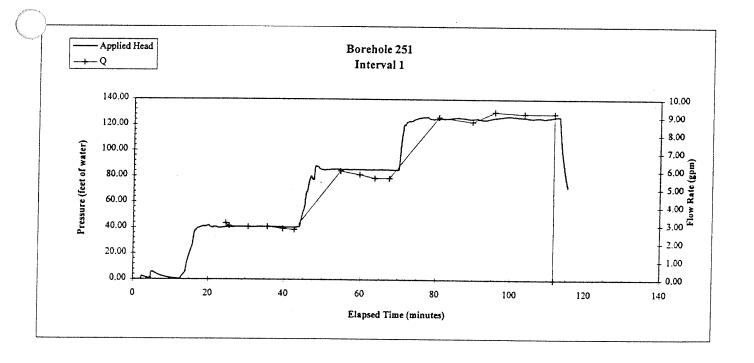


Packer Testing Results Borehole MF 251

| Bottom           Bottom           Bottom           (elevation)           6027.52           6027.52           4          5977.52           4          5977.52           4          5972.52           4          5927.52           4          5877.52           4          5877.52           4          5877.52           4          5877.52           4          5877.52           4          5877.52           4          5877.52           4          5833.02           4          5788.02           4          5788.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Interval # |        | Interva                  | Interval Denth           |             | l itholom |              |          |                         |                  |           | de des sessentes etc. de se apartes de la ses se actuarde de la ses se actuarde de la ses se actuarde de la se |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------------------------|--------------------------|-------------|-----------|--------------|----------|-------------------------|------------------|-----------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | F      | 1.                       |                          |             |           |              |          | riyaraunc (             | onductiv         | 'Ity      |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |                          |                          | HOM         |           |              | feet/min |                         |                  | cm/sec    |                                                                                                                |
| 36.08 $6052.88$ $61.44$ $6027.52$ Basalt $2.26E-06$ $3.01E-06$ $1.15E-06$ $2.05E-06$ $61.08$ $6027.88$ $8.6.44$ $602.52$ $8adstone$ $2.45E-05$ $9.25E-06$ $5.91E-05$ $1.72E-05$ $4.70E-06$ $86.08$ $6002.88$ $111.44$ $5977.52$ $8adstone$ $2.45E-05$ $5.91E-05$ $1.24E-05$ $4.70E-06$ $86.08$ $6002.88$ $111.44$ $5977.52$ $8adstone$ $8.1E-05$ $8.0E-05$ $7.23E-05$ $4.37E-05$ $3.06E-05$ $110.08$ $5977.88$ $161.44$ $5977.52$ $8adstone$ $4.08E-05$ $6.16E-05$ $2.07E-05$ $3.06E-05$ $116.08$ $5972.88$ $161.44$ $5977.52$ $8adstone$ $1.02E-05$ $1.05E-05$ $4.70E-06$ $6.98E-05$ $160.08$ $5927.88$ $161.44$ $5927.52$ $8adstone$ $1.12E-03$ $1.05E-05$ $5.17E-06$ $6.98E-05$ $161.08$ $5927.88$ $186.44$ $5902.52$ $8adstone$ $1.12E-03$ $1.30E-03$ $1.94E-04$ $5.92E-04$ $161.08$ $5992.88$ $211.44$ $5902.52$ $8adstone$ $1.12E-03$ $1.37E-03$ $1.94E-05$ $5.92E-04$ $211.16$ $5877.80$ $2355.44$ $5adstone$ $2.15E-06$ $1.99E-03$ $5.92E-04$ $5.92E-04$ $2305.88$ $588.38$ $255.94$ $5833.32$ $5833.32$ $583.04$ $5.92E-04$ $5.92E-04$ $2305.88$ $5803.88$ $3303.94$ $588.38$ $3305.94$ $588.38$ $5.928-04$ $5.$                                                                                                                                                                                                                                                 |            | (fbtc) | (elevation) <sup>4</sup> | 111<br>111<br>111<br>111 | (elevation) |           | Low          | High     | Regression <sup>3</sup> | Low <sup>4</sup> | High      | Regression                                                                                                     |
| 50.08         6032.88         61.44         6027.52         Basalt         2.26E-06         4.03E-06         5.01E-06         1.15E-06         2.05E-06         3.01E-06         1.15E-06         2.05E-06         3.01E-06         1.15E-05         3.077-05         4.70E-06         5.01E-06         5.01E-05         1.12E-05         3.05E-05         3.05E | -          |        |                          |                          |             |           |              |          |                         |                  | >         | 0                                                                                                              |
| 61.08         6027.88         86.44         6002.52         Sandstone         2.45E-05         9.25E-06         5.91E-05         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700         1.700                                                                                  | 71         | 30.08  | 6052.88                  | 61.44                    | 6027.52     | Basalt    | 2.26E-06     | 4.03E-06 | 5.01F-06                | 1158-06          | 2 0 4E 07 | 7 6 5 1 1                                                                                                      |
| 86.08         6002.88         111.44         5977.52         Sandstone         8.51E-05         8.00E-05         7.23E-05         4.37E-05         5.17E-05         5.17E-05         5.07E-05         3.06E-05         3.06E-05         3.06E-05         3.07E-05         3.07E-05         3.07E-05         3.07E-05         3.07E-05         5.17E-05         6.08E-06         5.07E-05         3.06E-05         3.06E-05         3.06E-05         3.06E-05         3.06E-05         3.06E-05         3.06E-05         3.07E-05         5.07E-05         5.07E-05         5.07E-06         1.99E-05         5.07E-06         1.99E-05         5.07E-06         1.99E-05         5.07E-06         1.99E-05         5.07E-06         5.04E-06         5.08E-04         5.05E-04         5.92E-04         5.92E-04         5.92E-04         5.92E-04         5 | 1          | 61.08  | 6027.88                  | 86.44                    | 6002.52     | Sandstone | 2.45E-05     | 9.25E-06 | 5 01E-05                | 30 3701          | 2.010-101 | 2.235-00                                                                                                       |
| 5977.88         136.44         5952.52         Sandstone         4.08E-05         6.01E-05         6.16E-05         2.07E-05         4.51E-05         4.51E-05           5952.88         161.44         5927.52         Sandstone         1.02E-05         1.05E-05         5.17E-06         6.08E-06           5952.88         161.44         5927.52         Sandstone         1.02E-05         1.05E-05         5.17E-06         6.08E-06           5902.88         186.44         5902.52         Sandstone         1.03E-05         3.02E-05         5.17E-06         6.08E-06           5902.88         211.44         5877.52         Sandstone         1.13E-05         2.93E-05         1.30E-03         1.94E-04         5.68E-04           5877.80         236.52         58andstone         6.0E-03         1.17E-03         1.30E-03         3.25E-04         5.68E-04           5833.38         236.94         5833.02         Sandstone         2.15E-03         1.17E-03         1.37E-03         3.55E-04         5.92E-04         0           5833.38         255.94         5833.02         Sandstone         2.15E-03         1.27E-03         1.37E-03         1.47E-03         8.58E-04         0           5808.38         305.94         5783.02                                                                                                  | 10         | 86.08  | 6002.88                  | 111.44                   | 5977.52     | Sandstone | 8.51E-05     | 8 60F-05 | 7 725 05                | 1 225 05         | 4./0E-00  | 3.00E-05                                                                                                       |
| 5952.88 $161.44$ $5927.52$ Sandstone $1.02E-05$ $1.20E-05$ $0.10E-05$ $3.06E-05$ $3.06E-05$ $5927.88$ $186.44$ $5927.52$ Sandstone $1.02E-05$ $1.05E-05$ $1.05E-05$ $5.17E-06$ $6.08E-06$ $5927.88$ $186.44$ $5902.52$ Sandstone $1.11E-03$ $1.05E-05$ $5.72E-06$ $1.49E-05$ $5902.88$ $211.44$ $5877.52$ Sandstone $1.11E-03$ $1.30E-03$ $1.94E-04$ $5.68E-04$ $5877.80$ $236.52$ $5852.44$ Sandstone $6.40E-04$ $1.17E-03$ $1.30E-03$ $1.94E-04$ $5.68E-04$ $583.38$ $236.52$ $5833.02$ Sandstone $2.15E-03$ $1.72E-03$ $1.37E-03$ $1.94E-04$ $5.68E-04$ $583.38$ $236.52$ $5833.02$ Sandstone $2.15E-03$ $1.17E-03$ $1.37E-03$ $1.94E-04$ $5.68E-04$ $583.38$ $230.94$ $5833.02$ Sandstone $2.15E-03$ $1.77E-03$ $1.27E-03$ $1.47E-03$ $8.58E-04$ $583.38$ $305.94$ $5783.02$ Sandstone $2.36E-04$ $3.74E-04$ $3.74E-04$ $3.66E-06$ $3.66E-06$ $5783.38$ $330.94$ $5783.02$ Sandstone $2.36E-04$ $3.24E-04$ $3.66E-06$ $1.97E-06$ $3.66E-06$ $5783.38$ $330.94$ $5783.02$ Sandstone $2.36E-04$ $3.74E-04$ $3.74E-04$ $1.71E-06$ $1.97E-06$ $3.66E-06$ $5783.38$ $330.94$ $5788.02$ Sandstone $3.36E-04$ $3.74E-04$ $1.71E-06$ <td< td=""><th>6</th><td>111.08</td><td>5977.88</td><td>136.44</td><td>5952.52</td><td>Sandstone</td><td>4 086-05</td><td>20 2000</td><td>CO-7777</td><td>4.32E-U3</td><td>4.3/E-05</td><td>3.67E-05</td></td<>                          | 6          | 111.08 | 5977.88                  | 136.44                   | 5952.52     | Sandstone | 4 086-05     | 20 2000  | CO-7777                 | 4.32E-U3         | 4.3/E-05  | 3.67E-05                                                                                                       |
| 5927.88 $186.44$ $5902.52$ Sandstone $1.02E-03$ $1.02E-05$ $5.17E-06$ $6.08E-06$ $5902.88$ $211.44$ $5877.52$ Sandstone $1.13E-05$ $2.93E-05$ $5.72E-06$ $1.49E-05$ $5877.80$ $236.52$ $5877.52$ Sandstone $3.82E-04$ $1.12E-03$ $1.30E-03$ $1.94E-04$ $5.68E-04$ $5877.80$ $236.52$ $5852.44$ Sandstone $6.40E-04$ $1.17E-03$ $1.37E-03$ $1.94E-04$ $5.68E-04$ $583.38$ $255.94$ $5833.02$ Sandstone $2.15E-03$ $1.79E-03$ $1.37E-03$ $1.94E-04$ $5.68E-04$ $583.38$ $255.94$ $5833.02$ Sandstone $2.15E-03$ $1.77E-03$ $1.37E-03$ $1.94F-04$ $5.92E-04$ $583.38$ $235.94$ $5833.02$ Sandstone $2.15E-03$ $1.79E-03$ $1.37E-03$ $1.47E-03$ $8.58E-04$ $583.38$ $305.94$ $5783.02$ Sandstone $2.89E-03$ $1.69E-03$ $1.27E-06$ $3.56E-06$ $3.56E-04$ $5783.38$ $330.94$ $5783.02$ Sandstone $3.36E-04$ $3.74E-04$ $3.24E-04$ $1.77E-03$ $8.58E-04$ $5783.38$ $330.94$ $5758.02$ Sandstone $3.36E-04$ $3.74E-04$ $3.24E-04$ $1.77E-06$ $3.66E-06$ $5783.38$ $330.94$ $5758.02$ Sandstone $3.36E-04$ $3.74E-04$ $3.24E-04$ $1.90E-04$ $578.33$ $1.778.02$ Sandstone $3.36E-04$ $3.74E-04$ $3.24E-04$ $1.90E-06$ $578.38$ $3.30.94$ </td <th>8</th> <td>136.08</td> <td>5952.88</td> <td>161.44</td> <td>\$ 17 52</td> <td>Sandstone</td> <td>1 0/1 0/2 VE</td> <td>CO-31001</td> <td>0.10E-U2</td> <td>2.07E-05</td> <td>3.06E-05</td> <td>3.13E-05</td>                     | 8          | 136.08 | 5952.88                  | 161.44                   | \$ 17 52    | Sandstone | 1 0/1 0/2 VE | CO-31001 | 0.10E-U2                | 2.07E-05         | 3.06E-05  | 3.13E-05                                                                                                       |
| 5902.88 $1.144$ $5877.52$ Sandstone $1.13E-05$ $2.93E-05$ $5.72E-06$ $1.49E-05$ $5.68E-04$ $0$ $5877.80$ $236.52$ $5877.52$ $5andstone$ $3.82E-04$ $1.12E-03$ $1.30E-03$ $1.94E-04$ $5.68E-04$ $0$ $5877.80$ $236.52$ $5852.44$ $5andstone$ $6.40E-04$ $1.17E-03$ $1.30E-03$ $3.25E-04$ $0$ $5858.38$ $225.94$ $5833.02$ $5andstone$ $2.15E-03$ $1.79E-03$ $1.37E-03$ $1.09E-03$ $9.08E-04$ $0$ $5833.38$ $225.94$ $5833.02$ $5andstone$ $2.15E-03$ $1.77E-03$ $1.37E-03$ $1.09E-03$ $9.08E-04$ $0$ $5833.38$ $230.94$ $5833.02$ $5andstone$ $2.89E-03$ $1.69E-03$ $1.27E-06$ $3.66E-06$ $3.66E-06$ $3.66E-06$ $5783.38$ $330.94$ $5783.02$ $5andstone$ $3.36E-04$ $3.74E-04$ $1.71E-04$ $1.90E-04$ $0$ $5783.38$ $330.94$ $5783.02$ $5andstone$ $3.36E-04$ $3.74E-04$ $1.71E-04$ $1.90E-06$ $3.66E-06$ $5783.38$ $330.94$ $5783.02$ $5andstone$ $3.36E-04$ $3.74E-04$ $1.71E-04$ $1.90E-04$ $0$ $5783.38$ $330.94$ $5783.02$ $5andstone$ $3.36E-04$ $3.74E-04$ $1.71E-04$ $1.90E-04$ $0$ $5783.38$ $330.94$ $5788.02$ $5andstone$ $3.36E-04$ $3.74E-04$ $1.71E-04$ $1.90E-04$ $0$ $5783.38$ $330.94$ $5788.02$                                                                                                                                                                                                                                                           | 7          | 161.08 | 5077 88                  | 106 44                   | 201202      |           | CU-320.1     | 1.20E-05 | 1.05E-05                | 5.17E-06         | 6.08E-06  | 5.36E-06                                                                                                       |
| 3702.88         211.44         5877.52         Sandstone         3.82E-04         1.12E-03         1.30E-03         1.94E-04         5.68E-04         6           5877.80         236.52         5852.44         Sandstone         6.40E-04         1.17E-03         1.33E-03         3.25E-04         5.68E-04         6           5833.38         235.94         5833.02         Sandstone         2.15E-03         1.77E-03         1.37E-03         1.09E-03         908E-04         6           5833.38         255.94         5833.02         Sandstone         2.15E-03         1.77E-03         1.37E-03         1.09E-03         908E-04         6           5833.38         280.94         5833.02         Sandstone         2.15E-06         7.21E-06         1.47E-03         8.58E-04         6           5808.38         305.94         5783.02         Sandstone         2.35E-06         7.21E-06         3.56E-06         3.66E-06         3.66E-06         3.66E-06         3.66E-06         6         7.21E-06         2.92E-06         3.66E-06         6         6         7.21E-06         2.92E-06         3.66E-06         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                        |            | 00 701 | 00.12/2                  | 100.44                   | 70.70%0     | Sandstone | 1.13E-05     | 2.93E-05 | 3.02E-05                | 5.72E-06         | 1.49E-05  | 1.536-05                                                                                                       |
| 5877.80       236.52       5852.44       Sandstone       6.40E-04       1.17E-03       1.33E-03       3.25E-04       5.92E-04         5858.38       255.94       5833.02       Sandstone       2.15E-03       1.79E-03       1.37E-03       1.09E-03       9.08E-04         5833.38       280.94       5808.02       Sandstone       2.15E-03       1.79E-03       1.09E-03       9.08E-04         5833.38       280.94       5808.02       Sandstone       2.15E-06       7.21E-06       5.92E-06       3.58E-04         5808.38       305.94       5783.02       Sandstone       2.75E-06       7.21E-06       5.75E-06       3.66E-06         5783.38       330.94       5788.02       Sandstone       3.36E-04       3.74E-04       1.71E-04       1.90E-04         5783.38       330.94       5758.02       Sandstone       3.36E-04       3.24E-04       1.90E-04       1.90E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 00.001 | 07/02.000                | 211.44                   | 5877.52     | Sandstone | 3.82E-04     | 1.12E-03 | 1.30E-03                | 1.94E-04         | 5 68P-04  | KA7E MA                                                                                                        |
| 5858.38       255.94       5833.02       Sandstone       2.15E-03       1.75E-03       5.25E-04       5.92E-04       5.92E-04         5833.38       280.94       5833.02       Sandstone       2.15E-03       1.79E-03       1.09E-03       9.08E-04       5.92E-04         5833.38       280.94       5808.02       Sandstone       2.15E-03       1.69E-03       1.09E-03       9.08E-04         5808.38       305.94       5783.02       Sandstone       2.75E-06       7.21E-06       6.72E-06       3.66E-06         5783.38       330.94       5783.02       Sandstone       3.36E-04       3.74E-04       3.24E-04       1.90E-03       8.58E-04         783.38       330.94       57758.02       Sandstone       3.36E-04       3.74E-04       3.24E-04       1.90E-06       3.66E-06         778.05       Sandstone       3.36E-04       3.74E-04       3.24E-04       1.90E-04       1.90E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c          | 211.16 | 5877.80                  | 236.52                   | 5852.44     | Sandstone | 6 40F-04     | 1 175 03 | 1 175 01                |                  |           | +0-770'D                                                                                                       |
| 5833.38         280.94         5808.02         Sandstone         2.13E-03         1.79E-03         1.09E-03         9.08E-04           5883.38         280.94         5808.02         Sandstone         2.89E-03         1.69E-03         1.09E-03         9.08E-04           5883.38         305.94         5783.02         Sandstone         2.89E-03         1.69E-03         1.47E-03         8.58E-04           5783.38         330.94         5783.02         Sandstone         5.75E-06         7.21E-06         6.72E-06         3.66E-06           5783.38         330.94         5758.02         Sandstone         3.36E-04         3.74E-04         1.71E-04         1.90E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4          | 230.58 | 5858.38                  | 255 94                   | 5832 07     | Condeter  | F0-701-0     | 0-7/1-1  | 1.335-03                | 3.25E-04         | 5.92E-04  | 6.78E-04                                                                                                       |
| 2003.34         3808.02         Sandstone         2.89E-03         1.69E-03         1.23E-03         1.47E-03         8.58E-04           5808.38         305.94         5783.02         Sandstone         5.75E-06         7.21E-06         6.72E-06         3.66E-06         3.66E-06           5783.38         330.94         5778.02         Sandstone         3.36E-04         3.74E-04         1.71E-04         1.90E-04           6778.02         Sandstone         3.36E-04         3.74E-04         3.24E-04         1.90E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3          | 255 58 | 5813 20                  | NO VOL                   | 20.0002     |           | 2.13E-U3     | 1.79E-03 | 1.37E-03                | 1.09E-03         | 9.08E-04  | 6.98E-04                                                                                                       |
| Joue.36         JOJ.94         5783.02         Sandstone         5.75E-06         7.21E-06         6.72E-06         3.66E-06         3.66E-06           5783.38         330.94         5758.02         Sandstone         3.36E-04         3.74E-04         1.71E-04         1.90E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ····· ,    | 05.020 | 00.0002                  | 201.94                   | 20.8080     | Sandstone | 2.89E-03     | 1.69E-03 | 1.23E-03                | 1.47E-03         | 8.58E-04  | 6.27E-04                                                                                                       |
| 5783.38         330.94         5758.02         Sandstone         3.36E-04         3.74E-04         1.71E-04         1.90E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 -        | 205.20 | 00.000                   | 96.005                   | 5783.02     | Sandstone | 5.75E-06     | 7.21E-06 | 6.72E-06                | 2.92E-06         | 3.66E-06  | 3 415-06                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 86.002 | 5783.38                  | 330.94                   | 5758.02     | Sandstone | 3.36E-04     | 3.74E-04 | 3 246-04                | 1715.04          | 1 005 04  | 00-311-00                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |                          |                          |             |           |              |          | 10-71-7-0               | 1.111.04         | 1.906-04  | 1.00E-U4                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |                          |                          |             |           |              |          |                         |                  |           |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |                          |                          |             |           |              |          |                         |                  |           |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |                          |                          |             |           |              |          |                         |                  |           |                                                                                                                |

<sup>1</sup> Feet below top of casing.
 <sup>2</sup> Feet above mean sea level
 <sup>3</sup> Regression analysis does not include origin as a point.
 <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.

7/30/96


| 061.1975-6149     |                                                  |                                                                        |                                                                     |                                                                                          |                                | I                       | Average Q                        | (gaVmin)        |       |       | 0.00         | 00.0          | 0.0              | 00.0        | 00.0               | 00.0         | 00.0    | 0.00               | 0.0    | 8 8        | 0.00                | 0.00         | 000     | 0.00    | 0.00    | 000         | 000          | 0.0     | 0.00         | 0.00         |
|-------------------|--------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|-------------------------|----------------------------------|-----------------|-------|-------|--------------|---------------|------------------|-------------|--------------------|--------------|---------|--------------------|--------|------------|---------------------|--------------|---------|---------|---------|-------------|--------------|---------|--------------|--------------|
| $\langle \rangle$ |                                                  |                                                                        |                                                                     |                                                                                          |                                | 5 Point Moving Averages | Δ time                           | (minutes)       |       |       | 0.02         | 10:0          | 0010             | 0.02        | 0.03               | 10:0-        | 0.06    | 0.00               | -0.05  | 13.9       | 0.03                | 0.0          | 300     | 0.04    | 10:0    | 00.0        | 41.0<br>CH 0 | 1.28    | 1.96         | 2.41<br>1.60 |
|                   |                                                  |                                                                        | _                                                                   | Vertical Depth (f)<br>Above 339.86<br>Below 311.66                                       | 330.80                         | 5 Point M               | Applied Head                     | (101 M M 101 1) |       |       | 0.00         | 10.0          | 0.02             | 10.0        | 10.0               | 0.01         | 0.02    | 0.03               | 0.02   | 0.02       | 10.0                | 000          | 00.0    | 00'0    | 10:0    | 10.0        | 0.22         | 0.47    | 0.86         | 1.39         |
|                   |                                                  |                                                                        | Bottom of interval                                                  | nove ocputa (11) Vertical<br>Above 330.00 Above<br>Bedow 331.80 Below                    | MINE OF BICKAR (II)            | 1226                    | Average Q<br>(sal/min)           |                 |       | 0.00  | 0.0          | 00.00         | 00.00<br>00.00   | 0.00        | 00.0               | 0.0          | 0.0     | 0.00               | 0.0    | 00.00      | 0.00                | 0000         | 00.0    | 0.00    | 00.00   | 00.0        | 0.00         | 00.00   | 0,00         | 00.0<br>00.0 |
|                   |                                                  |                                                                        |                                                                     | rtees acpta (11)<br>Above<br>Below<br>Vertical dareth of                                 |                                | 3 Point Moving Averages | Δ time<br>(mins)                 | Ì               |       | 8 8   | 10'0         | <b>90</b> .0- | 99 <b>7</b> 3 7  | 0.00        | 90.0-<br>10 0      | 0.05         | 8.0     | 10.0               | 9.0    | 00.0       | 0.02                | 0.0          | 10.0-   | 10.0    | 0.0     | 0.05        | 0.16         | 0.87    | <u>1</u>     | <b>6</b> 1   |
|                   |                                                  |                                                                        | a:<br>trai<br>Vertical Dank (n)                                     | 299.9                                                                                    |                                | 3 Point                 | Applied Head<br>(fect of water)  |                 |       | 10:0- | 10.0         | 0.02          | 0.02             | 0.02        | 100                | 0.02         | 0.02    | 0.02               | 0.02   | 0.02       | 10.0                | 0.00         | 10.0-   | 10.0-   | 0.02    | 0.02        | 0.07         | 0.35    | 0.79<br>Tr 1 | ñ <b>8</b>   |
|                   |                                                  | itraddie packer<br>wabole                                              | stà calculation:<br>Top of laterval<br>Vertici                      | Above 300.00 Above<br>Balow 310.00 Balow<br>Vertical depth of top of Interval (f)        |                                |                         |                                  | -               |       |       |              |               | W.,              |             |                    |              |         |                    |        |            | ····                |              |         |         |         |             |              |         |              |              |
| ()                |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation:<br>Top of latery<br>Hole denth (f) | Above<br>Below<br>Vertical deptà of                                                      |                                |                         | Q<br>(gal/min)                   |                 |       |       |              |               |                  |             |                    | j.<br>C      |         |                    |        | -          |                     |              |         |         |         |             |              |         |              |              |
|                   |                                                  | 100                                                                    |                                                                     | < . *                                                                                    |                                |                         | Applied Head<br>(feet of water)  | 0.04            | 10.0- | 10.0- | 100          | 00.0          | 00.00            | 0.04        | 10.0               | 0.03<br>20.0 | 10.0-   | 0.04               | 0.03   | 10:0-      | 0.00                | 0.00         | 10 9    | 00.0    | 0.04    | 0.03        | 10.0         | 0.16    | 1 1          | 1.95         |
|                   |                                                  |                                                                        | inches<br>feet<br>feet below top of casing                          | fect below top of casing<br>feet<br>feet below top of casing<br>feet below top of casing |                                |                         | Measured Head<br>(feet of water) | 0.04            | 10:0- | 10.0- | <b>1</b> 0 0 | 0.00          | 0.00             | <b>3</b> 00 | 10.0-              | (0.0<br>100  | 10.0-   | 10.0               | 0.03   | <b>600</b> | 0.00                | 00.0         | 10.07   | 0.00    | 0.04    | 0.03        | 10.77        | 0.86    | п            | 26.1         |
|                   | rle/CSSA                                         |                                                                        | 3.78<br>0.16<br>305.58                                              | 330,94<br>25,36<br>194,20<br>169,60                                                      |                                |                         | Elapsed time<br>(minutes)        | 0.00            | 0.06  | 0.18  | 0.00<br>81.0 | 0.42          | 0.54<br>0.60     | 1.12        | 0.78               | 1 20         | 1.02    | 1.14               | 1.26   | 86.1       | 1.44                | 8 2          | 101     | 1.80    | 91      | 961<br>70 C | 2.10         | 11      | 121          | 2.40         |
|                   | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 251<br>1<br>14-Nov-95                                                  | <sup>4</sup>                                                        |                                                                                          |                                | 7:34:27                 | Elapsed time<br>(hours)          | 0000            | 0.00  | 0:00  | 10:0         | 10.0          | 10.0             | 10.0        | 10.0               | 0.02         | 0.02    | 0.02               | 0.02   | 0.02       | 0.02                | 60.0<br>E0.0 | 0.03    | 0.03    | (0)0    | 0.0         | 6.04         | 0.04    | <b>10</b>    | <b>*</b> 0.0 |
|                   | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date                                   | Borebole diameter<br>Borebole radius<br>Test section location       | Length of test interval<br>Gauge Depth<br>Static Water Level                             | General Lithology<br>Sandstone | Start Time              | Clock<br>Time                    | 73427           | HCHEL | 73438 | 7:34:49      | 7:34:52       | 92.HET<br>10.8ET | 01:55.7     | 11.86.7<br>71.81.7 | 52.5E.T      | 7.35.28 | 2012017<br>01-21-7 | 135.43 | 05,51.7    | 7.35.51<br>111-24-7 | 10.00.7      | 7.36.08 | 7:36:15 | 7:36:26 | 7:36:29     | EC:0C:7      | 7:36:40 | 7:36:44      | 16.01.7      |

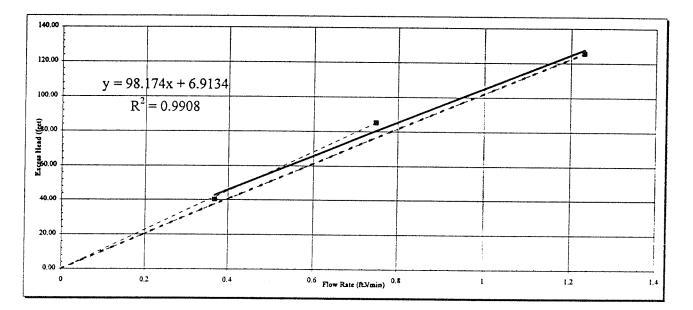
25101A CMA, Input Data

Colider Associates

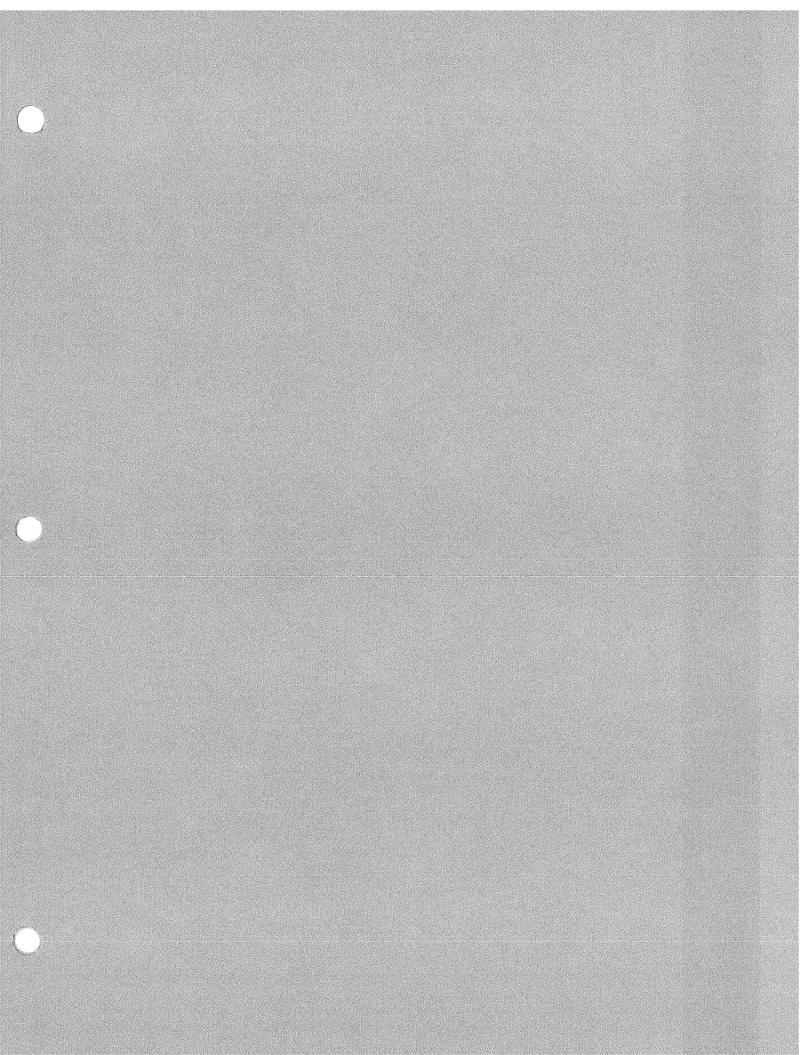
# Plot data used in analysis

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 40.38           | 2.750         |
| 85.13           | 5.600         |
| 125.59          | 9.200         |




| 1 | Client      | Morrison-Maierle/CSSA |
|---|-------------|-----------------------|
|   | Site        | Miner Flat            |
|   | Project No. | 943-27691             |
|   | Borehole    | 251                   |

Interval Number

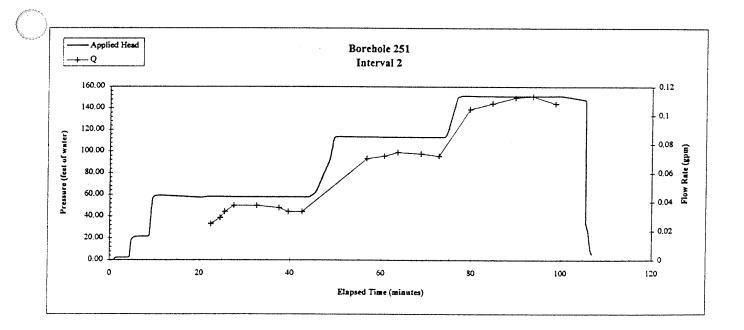

Plot data

1

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 40.38           | 2.750         | 0.3677                 |
| 85.13           | 5,600         | 0.7487                 |
| 125.59          | 9.200         | 1.2300                 |



| K = 1/(    | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | $Q = Flow \\ he = Ap \\ L = leng$ | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |   |  |  |  |  |  |
|------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Range of I | nydraulic conductivity                      |                                   |                                                                                                                          |   |  |  |  |  |  |
| K =        | 1.7E-04 cm/s<br>3.4E-04 feet/min            | Q =<br>h <sub>e</sub> =           | 0.899 ft <sup>3</sup> /mir<br>85.13 feet                                                                                 | I |  |  |  |  |  |
| K =        | 1.9E-04 cm/s<br>3.8E-04 feet/min            | Q =<br>h <sub>e</sub> =           | 1.477 ft <sup>3</sup> /min<br>125.59 feet                                                                                | 1 |  |  |  |  |  |
| K =        | 1.6E-04 cm/s<br>3.2E-04 feet/min            | Trendline Slope                   | 98.17                                                                                                                    |   |  |  |  |  |  |

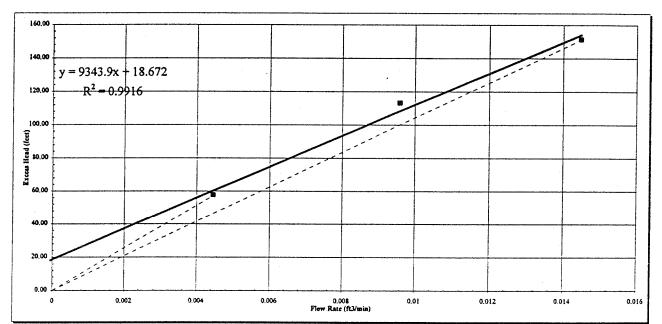



| 943-2791,130 |                                                  |                                                                        |                                                                                                                                                                       |                                              | Average Q<br>(gal/min)           |                      |                      | 0.00                 | 00.00          | 0.00                 | 0.00           | 0.0                  | 0.00        | 00.0     | 0.00         | 0.00         | 0.0      | 0.00     | 0.00         | 0.00                 | 0.00     | 0.00     | 00.0         | 000       | 0.00     | 00.0      | 00.0             |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------|----------------------|----------------------|----------------|----------------------|----------------|----------------------|-------------|----------|--------------|--------------|----------|----------|--------------|----------------------|----------|----------|--------------|-----------|----------|-----------|------------------|
| $\bigcirc$   |                                                  |                                                                        |                                                                                                                                                                       | S Point Moving Averages                      | ∆ time A<br>(minutes) (          |                      |                      | 1010                 | 0.02           | 50:0-                | 0.00           | 70'0                 | 090         | 0.89     | 1.76         | 1.65         | 8<br>1   | 6.0      | 0.10         | 8.0                  | 00.0     | 0.00     | 0.00         | 000       | 000      | 000       | 0 0              |
|              |                                                  | ×                                                                      | (1) di<br>(1, 1942<br>- 342 (005<br>- 342 (005                                                                                                                        | 5 Point Mc                                   | Applied Head<br>(feet of water)  |                      | i                    | <b>1</b> 0.0         | -0.07<br>20.0  | 0.02                 | -0.03<br>-0.03 | <b>1</b> 0.0         | 0.14        | 0.32     | 96.0         | 151          | 2.00     | 2.20     | 111          | 6 9 T                | 2.30     | 2.30     | 2.30         | 9 F 7     | 2        | 0.2       | 06.2             |
|              |                                                  |                                                                        | Bottom of interval<br>Vertical Depth (ft)<br>300.00 Above 2<br>310.00 Below 3<br>Xttom of interval (ft) X                                                             |                                              | Average Q<br>(gal/min)           |                      | 0.0                  | 0.00                 | 00.0           | 00.0                 | 00.0           | 0.00                 | 0.00        | 0.00     | 00.00        | 0.00         | 00.00    | 0.00     | 0.00         | 0.0                  | 00.00    | 0.00     | 80.0<br>00.0 | 0.00      | 0.00     | 0.00      | 00.0             |
|              |                                                  |                                                                        | Bottom of inter-<br>Bottom of inter-<br>Vertic<br>Bolow 300.00 Abov<br>Bolow 310.00 Bolow<br>Vertical depth of bottom of interval (rt)                                | 3 Point Moving Averages                      | A time A (mins) (                |                      | 8.8                  | 100                  | 0.0<br>10 0-   | 0.01                 | 10 0           |                      | 6.2         | 0.67     | 0.76         | 1.09<br>1.00 | 0.27     | 0.10     | 20.0<br>20.0 | 0.0                  | 0.00     | 9.0      | 8.8          | 0.0       | 0.00     | 00'0      | 0.0              |
|              |                                                  |                                                                        | n:<br>erval<br>Vertical Depth (ft) Hiol<br>Above 239.87<br>Below 239.87<br>al (ft) 230.43 Ver                                                                         | 3 Point A                                    | Applied Head<br>(feet of water)  |                      | <b>10</b> .0-        | 60.0                 | -0.02<br>10.0- | 10.0-                | -0.07<br>10.07 | 10.0-                | 0.06<br>2.5 | 6.5      | 16.0         | 1.34         | 2.14     | 2.25     | 2.28         | 2                    | 2.30     | 2.30     | 2.8          | 2.30      | 2.30     | 1.30      | 2.30             |
| ()           |                                                  | raddle packer<br>wahele                                                | Truc vertical depth calculation:<br>Top of interval<br>Hole depth (ft) Vertical<br>Above 200,00 Below<br>Below 200,00 Below<br>Vertical depth of lop of interval (ft) | -<br>-<br>-                                  |                                  |                      |                      |                      |                |                      |                |                      |             |          |              |              |          |          |              | ·                    |          |          |              | t<br>Afor |          | -         |                  |
|              |                                                  | Test Type:<br>Coastant head, Straddle packer<br>Gauge located dewnhole | Truc vertical depth calculation:<br>Top of latery<br>V V<br>Above 240,00 A<br>Bdow 280,00 B<br>Vertical depth of lop of laterval                                      |                                              | Q<br>(gal/min)                   |                      |                      |                      |                |                      |                |                      |             |          |              |              |          |          |              |                      |          |          |              |           |          |           |                  |
|              |                                                  |                                                                        |                                                                                                                                                                       |                                              | Applied Head<br>(feet of water)  | 00.0<br>10.0         | -0.05<br>-0.04       |                      | 10:0-          | -0.02<br>0.00        |                |                      | 0.21        |          | 0°88         |              | 2.20     |          |              |                      |          |          | 2.30         |           |          |           | 00.2             |
|              |                                                  |                                                                        | inchea<br>feat<br>feat below top of casing<br>feat below top of casing<br>feat below top of casing<br>feat below top of casing                                        |                                              | Mcasured Head<br>(feet of water) | 0.0<br>19.0          | 20.02<br>20.02       | -0.05                | 10.0-          | -0.02<br>0.00        | <b>9</b> 0'0'  | 10:0-<br>10:0-       | 0.21        | 0.55     | <b>88</b> .0 | 61           | 2.20     | <b>7</b> | 1.10         | 2.30                 | 2.30     | 973      | 2.30         | 2.30      | 2.30     | 2.30      | nc.7             |
|              | te/CSSA                                          |                                                                        | 3.78<br>0.16<br>280.58<br>305.94<br>134.20<br>194.20<br>194.20<br>199.60                                                                                              |                                              | Elapsed time<br>(minutes)        | 0.00<br>\$0.0        | 0.12                 | 0.30                 | 0.42           | 0.54<br>09.0         | 0.72           | 0.78<br>0.84         | 8.0         | 1.02     | 1.14         | 1.26         | 16.1     | 1 8      | 1.62         | 1.64                 | 2 9      | 1.94     | 2.04         | 2.10      | n i      | 2.24      | 5                |
|              | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691 | 251<br>2<br>14-Nov-95                                                  | Tep                                                                                                                                                                   | 10,04,26                                     | Elapsed time<br>(hours)          | 00.0                 | 000                  | 10:0                 | 10.0           | 10.0                 | 10.0           | 10.0                 | 20.0        | 0.02     | 0.02         | 0.02         | 0.02     | E0:0     | 0.03         | 0.03                 | 60.0     | 60.0     | 0.03         | 0.04      | 0.0      | 5 5       | \$<br>\$         |
| TIJUW        | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borehole diameter<br>Borehole radius<br>Test aection location<br>Length of test interval<br>Gauge Depth<br>Static Water Level                                         | General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                    | 10.04:26<br>10:04:30 | 10.04.37<br>10.04.37 | 10.04.44<br>10.04.45 | 10.04.51       | 10.04.58<br>10.05.02 | 10.05.09       | 10.05.13<br>10.05.16 | 10.05.24    | 10,05,27 | #C:50:01     | 10:05:42     | 10.05.49 | 10.06.00 | 10.06.03     | 10.06.07<br>10.04414 | 10.06.11 | 10.06.25 | 10.06.28     | 10.06.32  | 10.00.39 | 10,005,46 | -<br>-<br>-<br>- |

**Golder Associatos** 

25102A.CHA, liqui Date

| Plot data use   | d in analysis |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 57.85           | 0.033         |
| 113.21          | 0.072         |
| 151.43          | 0.108         |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole251Interval Number2

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 57.85           | 0.033         | 0.0045                 |
| 113.21          | 0.072         | 0.0096                 |
| 151.43          | 0.108         | 0.0145                 |



K = hydraulic conductivity

L = length of interval tested

Q = Flow rate

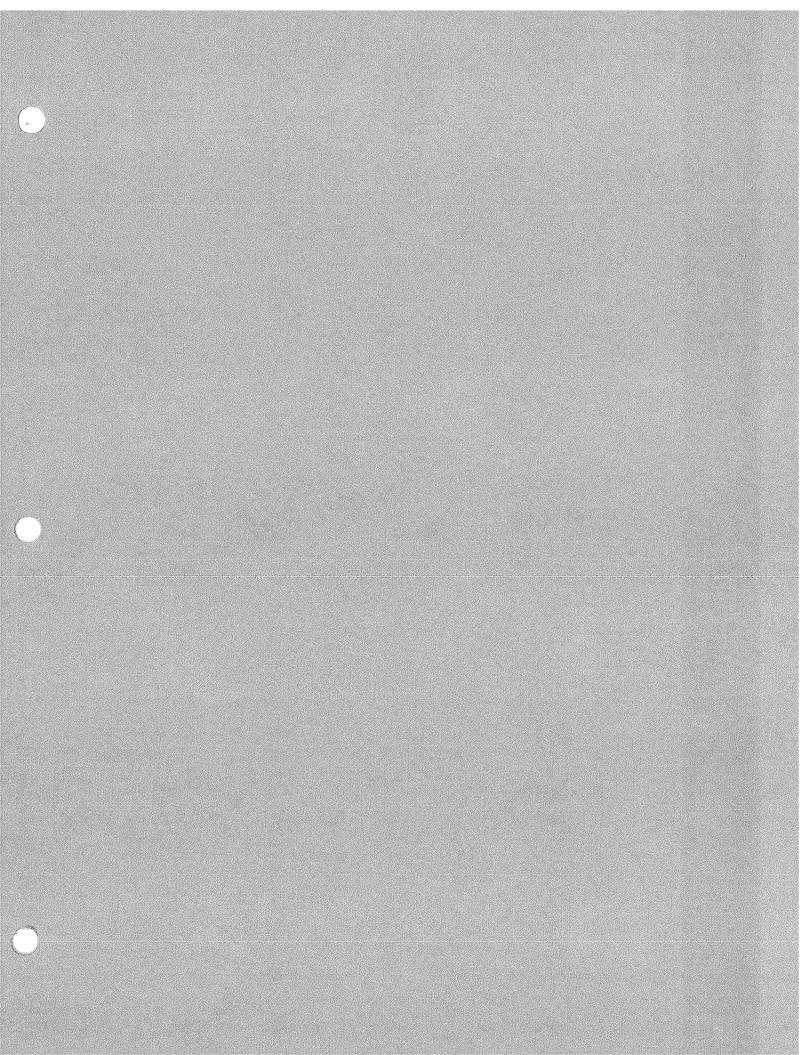
he = Applied head

r = borehole radius

(feet/min)

(ft<sup>3</sup>/min)

(feet)


(feet)

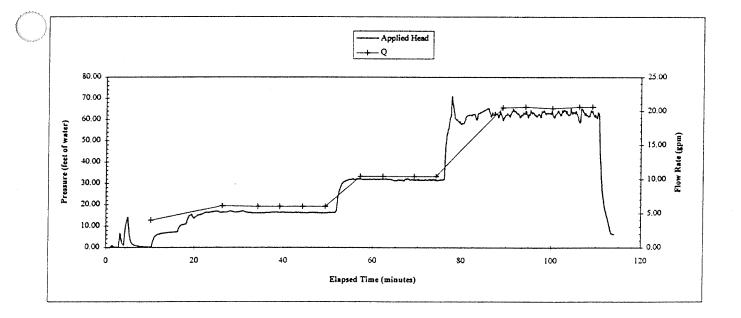
(feet)

 $K = 1/(2\Pi L) \times (Q/h_e) \times \ln (L/r)$ 

Range of hydraulic conductivity

| K = | 2.9E-06 feet/min                        | Q =              | 0.005   | ft <sup>3</sup> /min |
|-----|-----------------------------------------|------------------|---------|----------------------|
|     | 1.5E-06 cm/s                            | h <sub>o</sub> = | 57.85   | feet                 |
| K = | <b>3.7E-06 feet/min</b>                 | Q =              | 0.017   | ft <sup>3</sup> /min |
|     | 1.9E-06 cm/s                            | h <sub>e</sub> = | 151.43  | feet                 |
| K = | <b>3.4E-06 feet/min</b><br>1.7E-06 cm/s | Trendline Slope  | 9343.90 |                      |




| 0[].1615-[14 |                                                  |                                                                                                                                                                                      | ñ                       | Average Q<br>(gal/min)           |                                  | 0.0<br>00.0                        | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                | 0.00                    | 00.00<br>00.00<br>00.00          | 0.0                              | 00.0<br>00.0<br>00.0             | 0.0                  | 0.00                 | 00.0                 | 8.0            | 0.0                  | 00.00    | 0.00              |
|--------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|----------------------|----------------------|----------------|----------------------|----------|-------------------|
|              |                                                  |                                                                                                                                                                                      | 5 Point Moving Averages | Δ time<br>(minutes)              |                                  | £0.0-                              | 0.05<br>10.0                                                                                               | 10:0-<br>00:0           | 000<br>E7 0                      | 0.56<br>8.9                      | 0.10<br>0.00                     | -0.21<br>-0.50       | -0.55<br>-0.52       | 90.0-<br>22.0-       | -0.17<br>2.12  | 01.0<br>01.02        | 90.0     | -0.0 <del>1</del> |
|              |                                                  | 40 (1)<br>739:47<br>78:47<br>78:45                                                                                                                                                   | 5 Point M               | Applied Head<br>(feet of water)  |                                  | -0.05<br>-0.05                     | 40,0-<br>20,0-<br>20,0-                                                                                    | 40.0-<br>20.0-<br>20.0- | 0.00                             | 0.18<br>0.35                     | 92.0<br>82.0                     | 97.0<br>27.0         | 0.61<br>0.49         | 0.36<br>0.28         | 0.24           | 0.16<br>0.16         | 0.15     | 61.0<br>11.0      |
|              |                                                  | Hole depth (n)<br>Hole depth (n)<br>Above 230.00 Above 2<br>Below 290.00 Below 2<br>Vertical depth of bottom of interval (ft) 2                                                      | ges                     | Average Q<br>(gal/min)           | 9.8<br>8                         | 00°0                               | 00.0<br>00.0                                                                                               | 8<br>8<br>8<br>8        | 0.00<br>00.00                    | 00 00 00<br>00 00 00<br>00 00 00 | 8 0 0<br>0 0<br>0 0              | 00.0                 | 0.00                 | 0.00                 | 0.00           | 0.00                 | 0.00     | 00.0              |
|              |                                                  | Hole depth (N)<br>Above<br>Bakore<br>Vertical depth of h                                                                                                                             | 3 Point Moving Averages | A time<br>(mins)                 | 0.0                              | 0.0<br>10.0                        | 100                                                                                                        | 10.0                    | 10 0                             | п, т, т,                         | 9 1                              | -0.10<br>-0.31       | 8 Q Q                | -0.12<br>-0.16       | -0.10<br>-0.02 | 90.0                 | 3.9      | 90°0              |
|              |                                                  | er<br>I:<br>Trai<br>Vertical Depth (f)<br>He<br>Above 239,97<br>Below 235,45<br>V                                                                                                    | 3 Point                 | Applied Head<br>(feet of water)  | <b>1</b> 0.0                     | <b>1</b> 0<br>10<br>10<br>10<br>10 | 20.0                                                                                                       | 10.0<br>10.0<br>20.0    | 0.03                             | 0.14<br>0.33                     | 0.73                             | 0.87                 | 8 <del>1</del> 1     | 61.U                 | 0.22<br>0.18   | 0.17                 | 0.13     | 619               |
|              |                                                  | pack<br>latio<br>0.00<br>iterv                                                                                                                                                       |                         |                                  |                                  |                                    |                                                                                                            |                         |                                  |                                  |                                  |                      |                      |                      |                |                      |          |                   |
| Comment      |                                                  | Test Type:<br>Cosstant bead, Straddle,<br>Gauge located downhole<br>True vertical depth calcul<br>Uole depth (ft)<br>23<br>Below<br>26<br>Below<br>26<br>Vertical depth of top of la |                         | Q<br>(gal/min)                   |                                  |                                    |                                                                                                            |                         |                                  |                                  |                                  |                      |                      |                      |                |                      |          |                   |
|              |                                                  |                                                                                                                                                                                      |                         | Applied Head<br>(feet of water)  | -0.07<br>-0.04<br>-0.07          | 0.00<br>-0.05<br>-0.07             | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                  | 40.0-<br>20.0-          | -0.05<br>-0.05                   | 97.0<br>12.0                     | 0.79<br>1.91                     | 58'D                 | 19.0                 | 67.0                 | 0.19           | 0.17                 | 11.9     | 61.0              |
|              |                                                  | inchea<br>fect<br>fect below top of casing<br>fect below top of casing<br>fect below top of casing<br>fect below top of casing                                                       |                         | Measured Head<br>(feet of water) | 0.0<br>0.0<br>0.0                | 0.00<br>-0.05<br>-0.07             | 9<br>9<br>2<br>2<br>2<br>2<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 40 °C                   | -0.02<br>-0.02                   | 0.29                             | 0.79<br>0.91                     | 18.0                 | 110                  | 0.29                 | 61.0           | 0.17<br>0.13         | 1.9      | £1.0              |
|              | 1e/CSSA                                          | 3.78<br>0.16<br>255.58<br>280.94<br>280.50<br>194.20<br>194.20                                                                                                                       |                         | Elapsed time<br>(minutes)        | 0.000<br>0.060<br>0.120          | 0.160<br>0.160                     | 0.420<br>0.540<br>0.600                                                                                    | 0.720<br>0.780          | 0.840<br>0.960<br>0.01           | 1.140                            | 1.260<br>0.00<br>0.44            | 1.560                | 1.680                | 1.860                | 2.040          | 2.100<br>2.400       | 2.460    | 2.460             |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 251<br>3<br>14-Nov-95<br>Tap<br>Bottom                                                                                                                                               | 12.05:48                | time<br>3)                       | 8 8 8 8                          | 10:0                               | 10:0<br>10:0                                                                                               | 10'0                    | 0.01<br>0.02<br>0.02             | 0.02                             | 0.02<br>0.02                     | 0.03                 | 0.03<br>0.03         | £0,0<br>£0,0         | 6.03           | 0.04<br>10,0         | 0.04     | 10.0              |
| work         | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date<br>Borchole diameter<br>Borchole radius<br>Test section location<br>Lengh of test interval<br>Gauge Depth<br>Static Water Level                 | Start Time              | Clock<br>Time                    | 12.05.48<br>12.05.52<br>12.05.55 | 12.06.06<br>12.06.10               | 12.06.13<br>12.06.20<br>12.06.24                                                                           | 12.06.31<br>12.06.35    | 12.06:38<br>12.06:46<br>12.06:49 | 12:06:56<br>12:07:00             | 12.07.04<br>12.07.11<br>12.07.14 | 12:07:22<br>12:07:25 | 12.07.29<br>12.07.36 | 12.07.40<br>12.07.47 | 12.07.30       | 12.07.54<br>12.08:12 | 12.08 16 | 12 08:16          |

Golder Associates

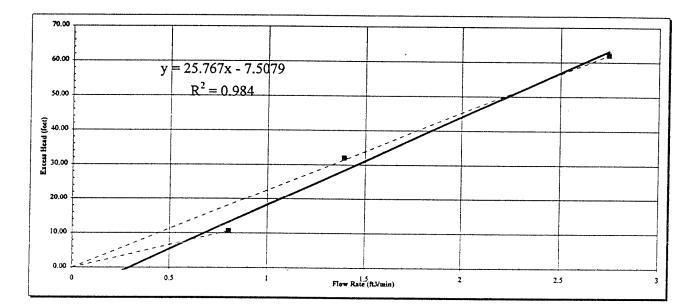
25103A.CHA, liqui Data

## Plot data used in analysis

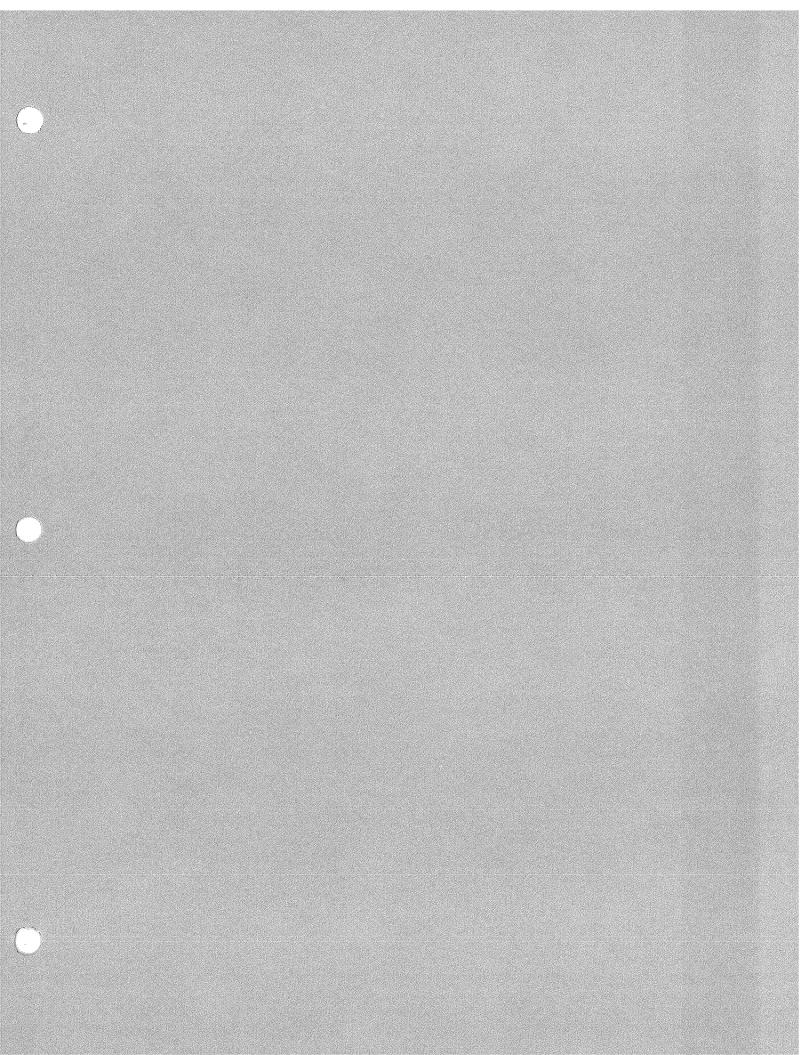
| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 10.60           | 6.000         |
| 32.00           | 10.400        |
| 62.00           | 20.500        |



| <br>Client  | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |


Borehole Interval Number

Plot data


251

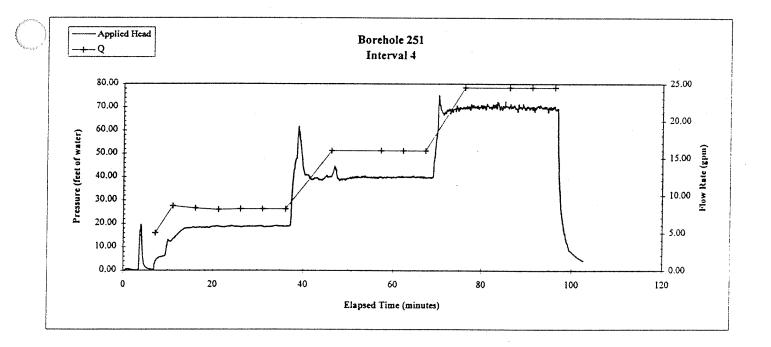
3

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 10.60           | 6.000         | 0.8022                 |
| 32.00           | 10.400        | 1.3905                 |
| 62,00           | 20.500        | 2.7409                 |



| K = 1/(2   | 2πL) x (Q/h <sub>z</sub> ) x ln (L/r) | Q =<br>he =<br>L =      | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |                              |  |  |  |  |  |  |  |
|------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Range of b | ydraulic conductivity                 |                         |                                                                                                                          |                              |  |  |  |  |  |  |  |
| K =        | 1.5E-03 cm/s<br>2.9E-03 feet/min      | $Q = h_{\sigma} =$      | 0.963<br>10.60                                                                                                           | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |  |
| K =        | 8.6E-04 cm/s<br>1.7E-03 feet/min      | Q =<br>h <sub>e</sub> = | 3.291<br>62.00                                                                                                           | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |  |
| K =        | 6.3E-04 cm/s<br>1.2E-03 feet/min      | Trendline SI            | ope 25.77                                                                                                                |                              |  |  |  |  |  |  |  |




| 943-2791.130                                        |                                                  |                                                                                                                           |                                                                                                                                                                                        |                                              | Average Q<br>(gal/min)           |                  |                      | 000                        | 0.0            | <b>0</b> 0.0         | 00.0     | 0.0      | 00.00    | 0.00         | 0.0                     | 000                              | 0.00         | 8.0             | 80.0         | 0.00        | 0.0        | <b>0</b> .0 | 00.0     | 0.00         | 0.00     | 0.00         |
|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|------------------|----------------------|----------------------------|----------------|----------------------|----------|----------|----------|--------------|-------------------------|----------------------------------|--------------|-----------------|--------------|-------------|------------|-------------|----------|--------------|----------|--------------|
| $\left( \begin{array}{c} \\ \\ \end{array} \right)$ |                                                  |                                                                                                                           |                                                                                                                                                                                        | 5 Point Moving Averages                      | ∆ time<br>(minutes)              |                  |                      | (0:0                       | ¥C 0           | 0.69                 | 1 U U    | 0.45     | 0.06     | 9<br>9<br>9  | 90.0                    | -0.05<br>20.05                   | 11.0-        | -0.16<br>Al 0.4 | -0.21        | -0.16       | 0 IZ       | 9 9<br>7 7  | -0.16    | -0.16        | 01.0-    | 90.0<br>90.0 |
|                                                     |                                                  |                                                                                                                           | cepth (N)<br>249.86<br>259.87<br>259.81                                                                                                                                                | 5 Point M                                    | Applied Head<br>(feet of water)  |                  |                      | 90.04<br>90.04             | 10.0           | 0.14<br>0.29         | 0.45     | 80'0     | 0.71     | 0.70         | 0.68<br>2 2 2           | 90 D                             | 0.62         | 0.59<br>0.54    | 05.0         | 0.46        | 0.18       | 0.34        | 100      | 0.27         | 67.0     | 0.20         |
|                                                     |                                                  | Rotton of Intervel                                                                                                        | Vertical depth (r) 250.00 a laterval<br>Above 250.00 Above 21<br>Babov 250.00 Babov 21<br>Vertical depth of bottoms of laterval (r) 22<br>Vertical depth of bottoms of laterval (r) 22 | 3                                            | Average Q<br>(gal/min)           |                  | 0.00                 | 000<br>000                 | 0.00           | 00.0                 | 0.00     | 0.00     | 0.00     | 0.00         | 0.00                    | 0.0                              | 0.00         | 0.00<br>0.00    | 00.0         | 0.0         | 8.0<br>8.0 | 0.0         | 0.00     | 0.0          | 0.00     | 8<br>8<br>8  |
|                                                     |                                                  |                                                                                                                           | Hole depth (f)<br>Above<br>Balov<br>Vertical depth of bo                                                                                                                               | 3 Point Moving Averages                      | Δ time<br>(mins)                 |                  | 0.02                 | 10.0                       | 0.10           | 65.0                 | 4C.0     | , 0.06   | 0.00     | 80.0<br>80.0 | 30.0-<br>20.0-          | 50.0-                            | 18 X         | <b>9</b> 9      | 0.10         | 1.9         | 8.0<br>8.0 | 0.10        | -0.16    | -0.0¢        | 0000     | <b>9</b> 0.0 |
|                                                     |                                                  |                                                                                                                           | Vertical Depth (f) E<br>Above 229.9<br>Bolow 239.88<br>al (f) 230.46 V                                                                                                                 | 3 Point                                      | Applied Head<br>(feet of water)  |                  | <b>90</b> .0         | <b>1</b><br>10<br>10<br>10 | <b>20.0</b>    | 0.29                 | 0.51     | 0.70     | 0.72     | 0.70         | 890<br>990              | 9.0                              | 0.62         | 0.55            | 0.50         | 0.45        | 95.0       | 97.0        | 0:30     | 0.15<br>22.0 | 17.0     | 8            |
| para -                                              |                                                  | nddle packer<br>nhole<br>a calculation:<br>Too of faterval                                                                | 210.00 Above<br>210.00 Above<br>240.00 Below<br>op of interval (ft)                                                                                                                    |                                              |                                  |                  |                      |                            | •              |                      |          |          |          |              |                         | 1911 - 1<br>1911 - 1<br>1911 - 1 |              |                 | 91           |             | 1          |             |          |              |          |              |
|                                                     |                                                  | Teil Type:<br>Constant baad, Synddle packer<br>Guuge bozaed dewnhole<br>True vertical depth calculation:<br>Too of fakery | Haie depth (ft) Vertie<br>Above 230.00 Above<br>Below 240.00 Below<br>Vertical depth of top of interval (ft)                                                                           |                                              | Q<br>(gal/min)                   |                  |                      | - 14.<br>                  |                |                      |          |          |          |              |                         |                                  |              |                 |              |             |            |             |          |              |          |              |
|                                                     |                                                  |                                                                                                                           |                                                                                                                                                                                        |                                              | Applied Head<br>(feet of water)  | 98.0<br>93.0     | -0.07                | 01.0                       | 90 GP          | 0.27                 | 0.59     | 0.72     | 0.72     | 0.72         | 28.00<br>28.00<br>29.00 |                                  | 0.60         |                 |              | 0.39        | 60.0       | 0.39        | 0.29     | 0.23         | 570      |              |
|                                                     | -                                                | inches<br>foct                                                                                                            | fect below top of casing<br>fect below top of casing<br>fect<br>fect below top of casing<br>fect below top of casing                                                                   |                                              | Mcasured Head<br>(feet of water) | 90.0-<br>90.0-   | -0.07<br>-0.03       | 01.0-                      | 90.0-<br>10.0- | 0.27                 | 4C m     | 0.72     | 0.72     | 0.72         | <b>8</b> 800<br>9900    | 0.66                             | 0.61         | 0.55            | 0.50         | 603         | 65.0       | 6:0         | 0.29     | 0.23         | 120      | 0.19         |
|                                                     | rle/CSSA                                         |                                                                                                                           | 230.58<br>255.94<br>25.36<br>194.20<br>109.60                                                                                                                                          |                                              | Elapsed time<br>(minutes)        | 0.000<br>0.060   | 0.120                | 001.0                      | 0.360          | 0.540                | 0.720    | 0.780    | 096.0    | 1.020        | 1.100                   | 1.260                            | 0171<br>1410 | 1.560           | 1.620        | 001         | 1.860      | 1.960       | 2.040    | 2.400        | 2.460    | 2.520        |
| ĩ                                                   | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 251<br>4<br>14-Nov-95                                                                                                     | Tep<br>Bollom                                                                                                                                                                          | 14,18,51                                     | Elapsed time<br>(hours)          | 0010             | 00:0                 | 10.0                       | 10.0           | 10.0                 | 10 0     | 10:0     | 0.02     | 0.01         | 0.02                    | 0.02                             | 0.02         | 0.03            | 0.03<br>70.0 | <b>10</b> 0 | 0.03       | [0] 0       | 000      | 10.0         | 10.0     | <b>1</b> 0.0 |
| 1/10/20                                             | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date<br>Borchole diameter<br>Borchole radiu                                               | Terl action location<br>Length of teal interval<br>Gauge Depth<br>Static Water Level                                                                                                   | Geacral Lithology<br>Sandstone<br>Start Time | Clock<br>Time                    | N41851<br>N41855 | 14:18:58<br>14:19:02 | 14.19.09                   | 14.19.16       | [7,6].4]<br>72,6].4] | 14.19.34 | 14.19.38 | 14.19.49 | 14,19:52     | 14.20.03                | 14.20.07                         | 14.20.17     | 14:20:25        | 14:20:28     | 14:20:39    | 14.20.43   | 14:20:50    | 14 20 33 | M.21.15      | 14:21:19 | N-21-22      |

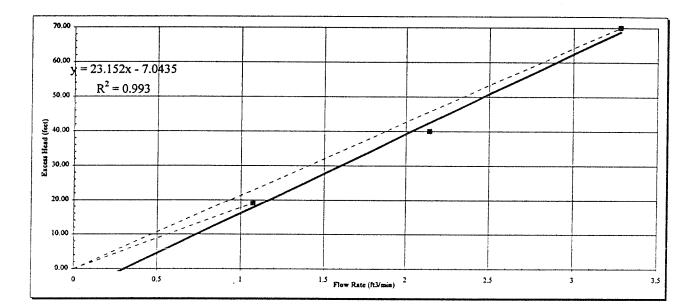
**Goldor Associatos** 

25104A CHA, Jupui Data

### Plot data used in analysis

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 19.00           | 8.000         |
| 40.00           | 16.000        |
| * 70.00         | 24.500        |



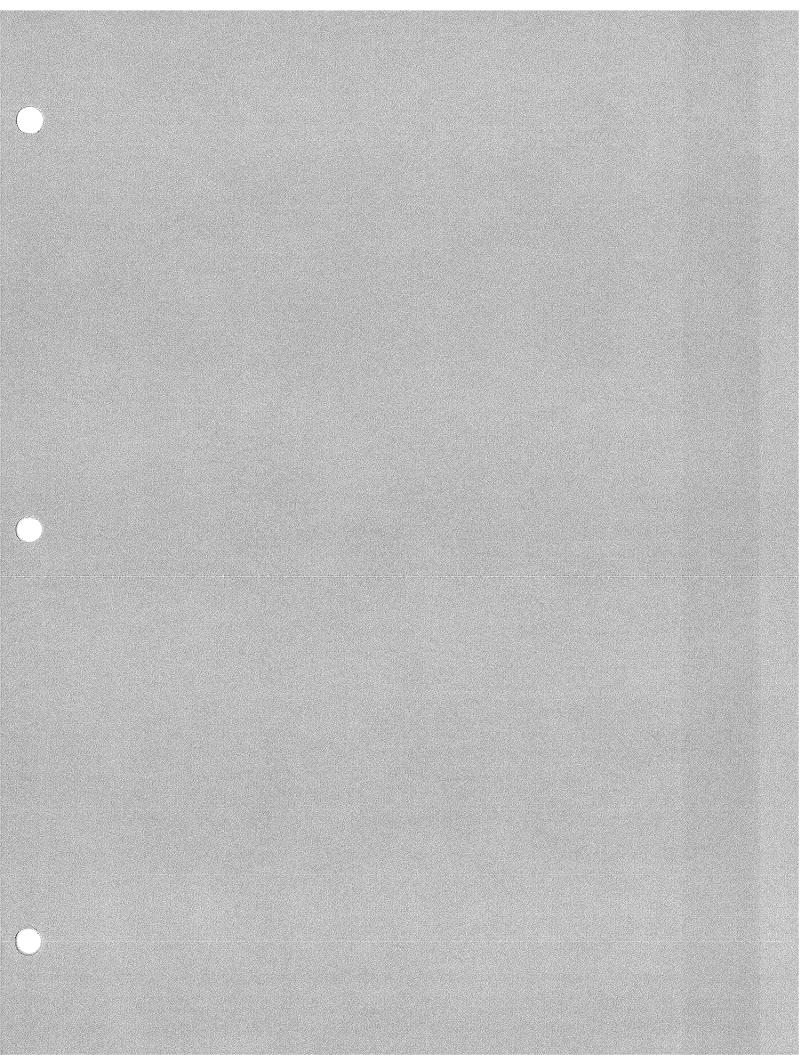

| Ŷ. | Client      | Morrison-Maierle/CSSA |
|----|-------------|-----------------------|
| ÷  | Site        | Miner Flat            |
|    | Project No. | 943-27691             |
|    | Borehole    | 251                   |

| Borenole        |  |
|-----------------|--|
| Interval Number |  |

Plot data

4

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 19.00           | 8,000         | 1.0696                 |
| 40.00           | 16.000        | 2.1392                 |
| 70.00           | 24.500        | 3.2757                 |




K = hydraulic conductivity (feet/min)

| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | Q = Flow<br>he = App<br>L = lengt<br>r = borehe | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |                              |  |
|------------|-----------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------|--|
| Range of I | hydraulic conductivity                  |                                                 |                                                      |                              |  |
| K =        | 1.1E-03 cm/s<br>2.2E-03 feet/min        | Q =<br>h <sub>e</sub> =                         | 1.284<br>19.00                                       | ft <sup>3</sup> /min<br>feet |  |
| K =        | <b>9.1E-04 cm/s</b><br>1.8E-03 feet/min | Q =<br>h <sub>e</sub> =                         | 3.933<br>70.00                                       | ft <sup>3</sup> /min<br>feet |  |
| K =        | 7.0E-04 cm/s<br>1.4E-03 feet/min        | Trendline Slope                                 | 23.15                                                |                              |  |

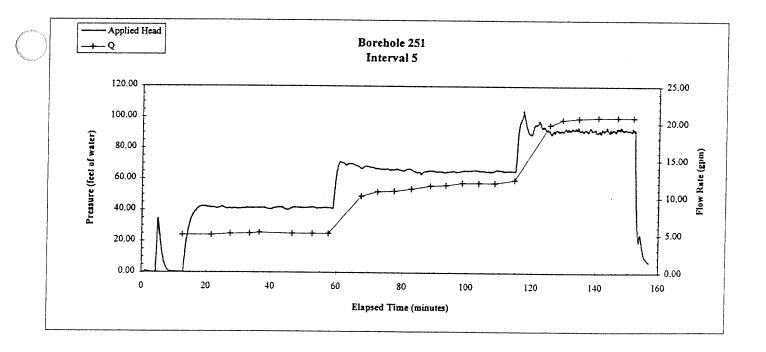
25104A.CHA, K calculation

Page 1 of 1



| inches<br>feet<br>feet below top of cauing<br>feet belo |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

(


NUCL

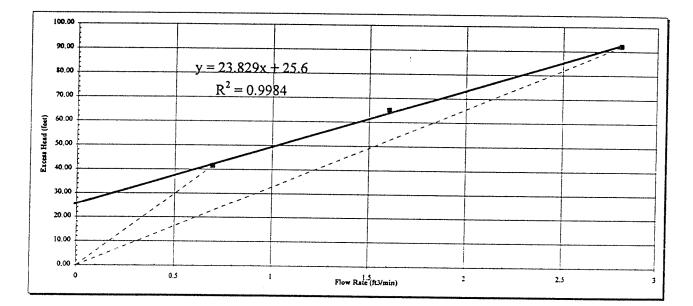
**Golder Associates** 

# 25105A CHA, liqui Data

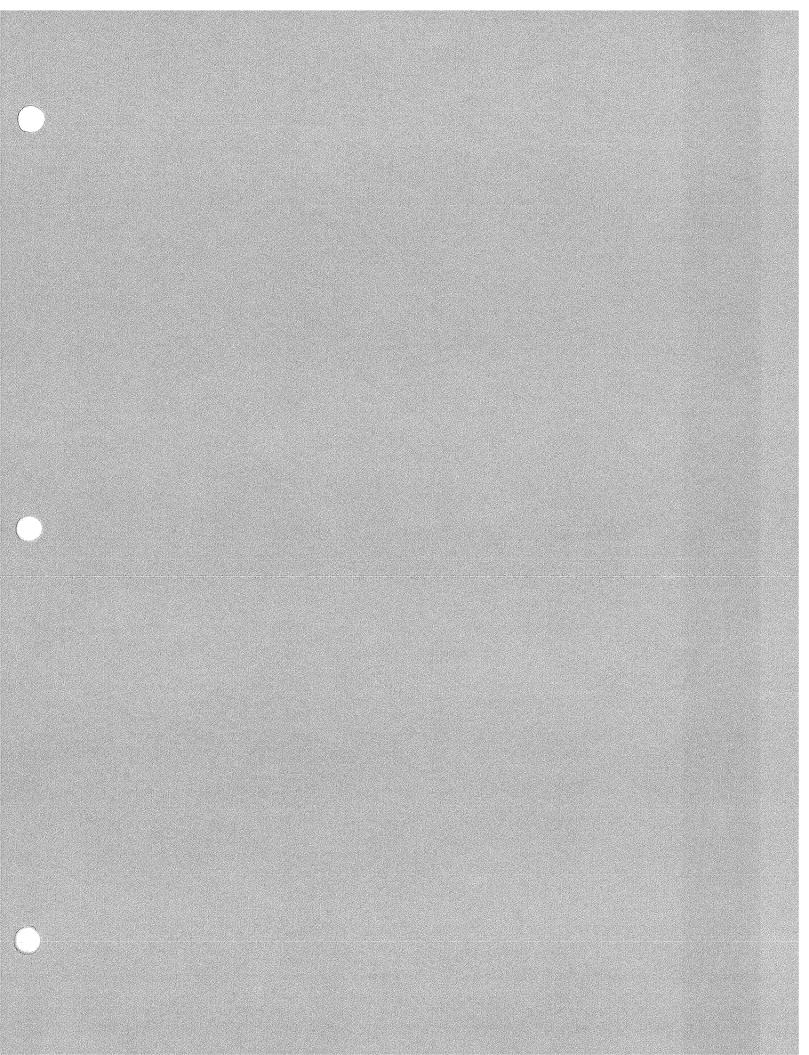
( )

| Plot data use   | d in analysis   |
|-----------------|-----------------|
| Applied Head    | Flow Rate (Q)   |
| (feet of water) | (gal/min)       |
| 41.50<br>65.00  | 5.200<br>12.000 |
| 92.00           | 21.000          |




 $\left( \begin{array}{c} \end{array} \right)$ 

|   | Client      | Morrison-Maierle/CSSA |
|---|-------------|-----------------------|
| ŝ | Site        | Miner Flat            |
|   | Project No. | 943-27691             |
|   |             |                       |


Borehole251Interval Number5

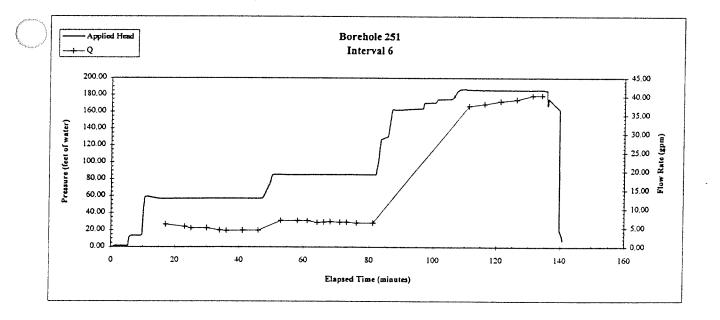
Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 41.50           | 5,200         | 0.6952                 |
| 65.00           | 12.000        | 1.6044                 |
| 92.00           | 21.000        | 2.8077                 |



| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | K = hydraulic conductivit<br>Q = Flow rate<br>he = Applied head<br>L = length of interval testo<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet) |
|------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Range of l | ydraulic conductivity                   |                                                                                                                        |                                  |
| K =        | 3.3E-04 cm/s<br>6.4E-04 feet/min        | $Q = 0.835 \text{ ft}^3/\text{min}$<br>$h_e = 41.50 \text{ feet}$                                                      | 1                                |
| K =        | 5.9E-04 cm/s<br>1.2E-03 feet/min        | $Q = 3.372 \text{ ft}^3/\text{mir}$<br>$h_e = 92.00 \text{ feet}$                                                      | I                                |
| K =        | <b>6.8E-04 cm/s</b><br>1.3E-03 feet/min | Trendline Slope 23.83                                                                                                  |                                  |



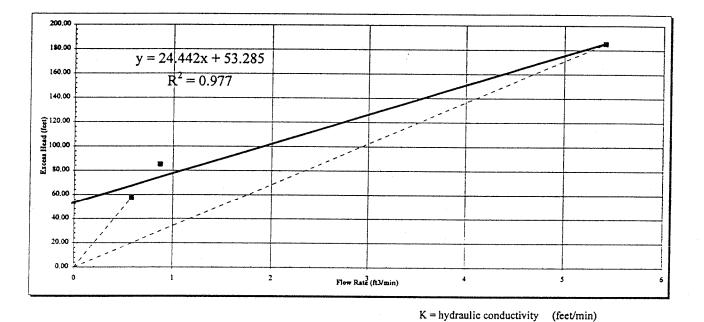

| 0E1.1475-EM |                                                              |                                                            |                                                                               |                                                      |                                |                                | Average Q<br>(sal/min)              |                      |               |                     | 00.0                                  | 00.0           | 00:00                | 8            | 0.00     | 0.00  | 0.0            | 0.00        | 0.00     | 800      | 0.00     | 00.0                                  | 0.00     | 0.0         | 800               | 8.9      | 00.0     | 0.00     | 0.00         | 0.00      | 0.00           |
|-------------|--------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|--------------------------------|-------------------------------------|----------------------|---------------|---------------------|---------------------------------------|----------------|----------------------|--------------|----------|-------|----------------|-------------|----------|----------|----------|---------------------------------------|----------|-------------|-------------------|----------|----------|----------|--------------|-----------|----------------|
|             |                                                              |                                                            |                                                                               |                                                      |                                | 5 Point Moving Averages        | ∆ time A<br>(minutes) (             |                      |               | .00                 | 50.07                                 | 0,00           | 90.0                 | 0.66         | 1.13     | 1.1   | 36.0           | 0.55        | 0.49     | 90.0     | 0.02     | 0.04                                  | 0.00     | 000         | 0.0               | 000      | 0.00     | 10:0     | 0 00         | 10.01     | -0.06<br>10.0- |
|             |                                                              |                                                            | th (ft)<br>209-89                                                             | 211,33                                               |                                | 5 Point Me                     | Applied Head<br>(feet of water)     |                      |               |                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 60.0-          | 0.0                  | 0.12         | 50.0     | 0.58  | 611            | 90.1        | 1.49     | 161      | 1.64     | 1.65                                  | 1.65     | <b>1</b> 91 | 19                | 1.64     | 1.64     | 1.63     | 1.64         | (9)<br>(1 | 1.61           |
|             |                                                              | ,                                                          | Bottom of laterval<br>Vertical Depth (ft)<br>210.00 Above 2<br>210.00 Above 2 |                                                      |                                |                                | Average Q<br>(gal/min)              |                      |               | 00.0                | 0.00                                  | 0.00           | 00.0                 | 00.0         | 0.00     | 00.0  | 0.00           | 0.00        | 00.0     | 0.00     | 0.00     | 0.00                                  | 000      | 000         | 0.00              | 0.00     | 0.00     | 0.00     | 0.0          | 0.0       | 0.0            |
|             |                                                              |                                                            | Hole depth (ft)<br>Above<br>Refere                                            | Vertical depth of bottom of laterval ((t)            |                                | <b>3 Point Moving Averages</b> | Δ time A<br>(mins) (                |                      | ł             | 10.0                | 0.00                                  | -0.0 <u>7</u>  |                      | 0.17         |          | 0.51  | 0.41           | 0.47        | 0.02     | 0.03     | 10,0     | 8 2                                   |          | 800         | -0.0 <del>3</del> | 10.0-    | 0.05     | 0.01     | <b>1</b> 0.0 | 10.04     | 8.9            |
|             |                                                              |                                                            | erval<br>Vertical Depth (ft) H.<br>Above 119.9<br>Below 189.99                |                                                      |                                | 3 Point                        | Applied Head<br>(feet of water)     |                      | 500           | 10.0-               | -0.03                                 | -0.02<br>5 2 4 | 5 5                  | 10.0         |          | 0.94  | 124            | 3           | 191      | 1.64     | 2        | 1.65                                  | 165      | 1.65        | 1.64              | 1.63     | 1.63     | 1.65     | 2            | 162       | 1.62           |
|             | Teit Type:<br>Control bood Straddl, archee                   | Gauge located downhole<br>True vertical depth calculation: | Top of inte<br>180.00<br>190.00                                               | Vertical depta of top of laterval (ft)               |                                |                                | Q<br>(gal/min)                      |                      |               |                     |                                       |                |                      |              |          |       |                |             |          |          |          | · · · · · · · · · · · · · · · · · · · |          |             |                   |          |          |          |              |           |                |
|             | Test Type:<br>Contrast b                                     | Gauge la<br>True vei                                       | Hole depth (A)<br>Above<br>Below                                              | Vertical                                             |                                |                                | Applied Head<br>(feet of water) (g) |                      | 10.0-         |                     |                                       | 300            |                      | 10.0         |          |       |                | 8 9         |          | 1.61     | 59 J     | 3 3                                   | 1.65     |             |                   |          | 1.04     |          |              |           |                |
|             |                                                              | inch <b>e</b>                                              | feet<br>feet below top of caaing<br>feet below top of caaing<br>feet          | feet below top of casing<br>feet below top of casing |                                |                                | Measured Head<br>(feet of water)    | 10.0-                | 10.0-<br>00.0 | 10.0-               | 0.01                                  | 5.7            | 10:0-                | <b>10</b> .0 | 0.62     | 1.09  | 1.12           | 2<br>1<br>8 | 161      | 191      | 1.66     | 1 66                                  | 1.65     | 1.66        | 1.65              | 93 I     | 151      | 165      | 1.61         | 1.64      | 161            |
|             | le/CSSA                                                      |                                                            |                                                                               | 174.70 fo<br>169.60 fo                               |                                |                                | Elapsed time<br>(minutes)           | 0.000                | 0.120         | 0.130               | 00£.0<br>036.0                        | 07470          | 0.540                | 0.600        | 0.780    | 0.840 | 0.900<br>1.020 | 0+1-1       | 1.200    | 1967     | 1.440    | 1.560                                 | 1.620    | 1.680       | 1.000             | 1.800    | 2.040    | 2 100    | 2.220        | 2.280     | 2.340          |
|             | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691<br>251<br>6 | 15-Nov-95                                                  | Top<br>Bottom                                                                 |                                                      |                                | 13:13:53                       | Elapsed time<br>(hours)             | 000                  | 000           | 00.0                | 10.0                                  | 10.0           | 10.0                 | 10.0         | 10.0     | 10.0  | 0.02           | 0.02        | 0.02     | 0.02     | 0.02     | 0.03                                  | 6.03     | 0.03        | 100               | (0)0     | 0.03     | 0.04     | 0.04         | 10.0      | 10:0           |
| ( )         | Client<br>Site<br>Project No.<br>Borchole<br>Test Number     | Test Date<br>Borchole diameter                             | Test section location<br>Length of test interval                              | Static Water Level                                   | General Lithology<br>Sandstone | Start lime                     | Clock<br>Time                       | 13:13:53<br>13:13:53 | 13:14:00      | 13:14:04<br>11:4:41 | 12:14:15                              | 13-14-18       | 13.14.25<br>13.14.25 | 10 H 30      | 13.14.40 | 0.440 | 11454          | 13:15.01    | 13.15.05 | 01.01.01 | 91:01:01 | 13.13.27                              | 13:13:30 | 15151       | 0.0.6             | 10.15.52 | 13:15.55 | 13.15.59 | 13:16:06     | 0131.01   | 13.16.13       |

**Golder Associates** 

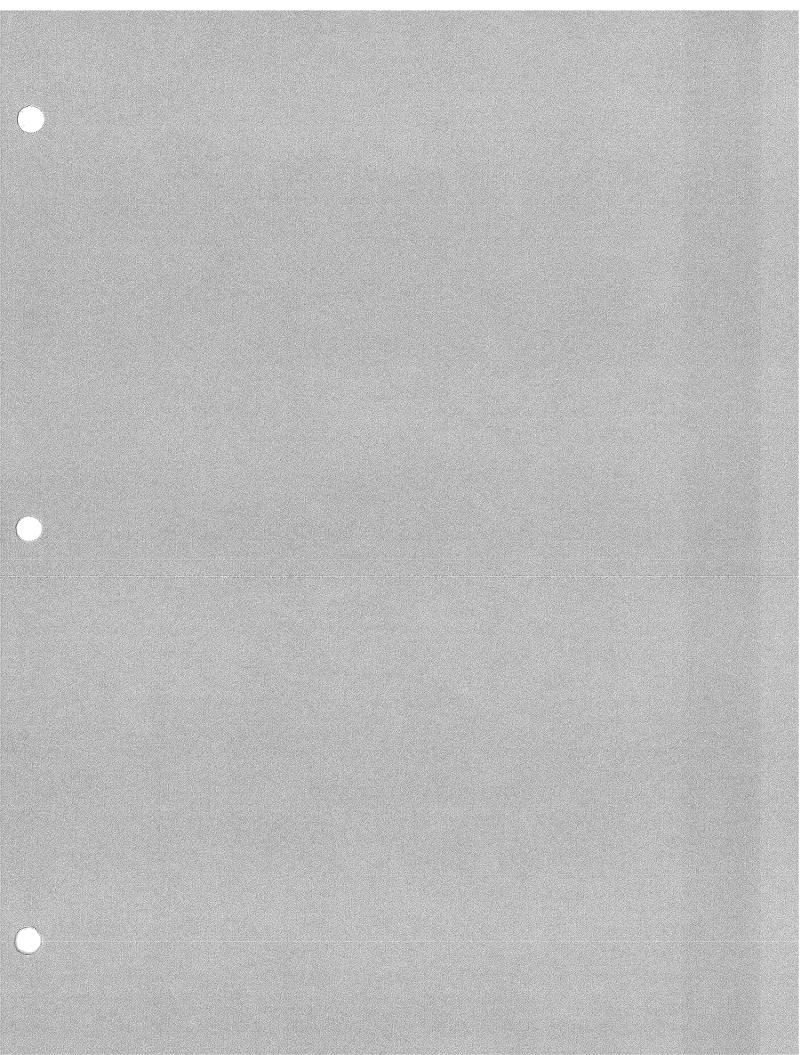
25106A.CHA, liqui Data

#### Plot data used in analysis

| Applied Head    | Flow Rate (Q) |  |  |  |  |  |  |
|-----------------|---------------|--|--|--|--|--|--|
| (feet of water) | (gal/min)     |  |  |  |  |  |  |
| 57.50           | 4.300         |  |  |  |  |  |  |
| 85.00           | 6.500         |  |  |  |  |  |  |
| 185.00          | 40.500        |  |  |  |  |  |  |




| े с | lient      | Morrison-Maierle/CSSA |
|-----|------------|-----------------------|
| / S | ite        | Miner Flat            |
| P   | roject No. | 943-27691             |
| B   | orehole    | 251                   |

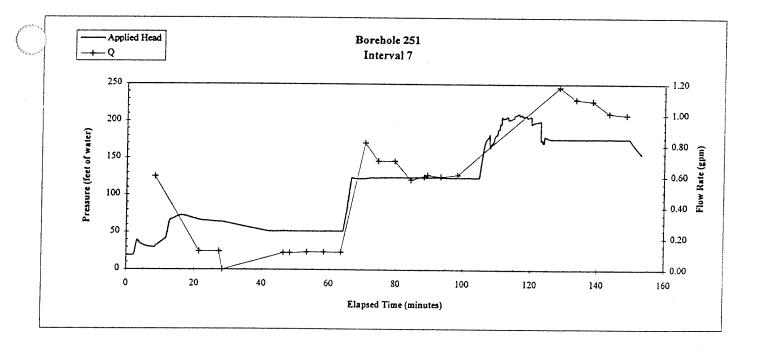

Borehole Interval Number

Plot data

| Applied Head    | Flow Rate (Q)  | Flow Rate (Q)          |
|-----------------|----------------|------------------------|
| (feet of water) | (gal/min)      | (ft <sup>3</sup> /min) |
| 57.50           | 4.300          | 0.5749                 |
| 85.00           | 6.500          | 0.8691                 |
| 185.00          | 40.500         | 5.4149                 |
| 57.50<br>85.00  | 4.300<br>6.500 | 0.5749<br>0.8691       |



| K = 1/(    | $(2\pi L) \times (Q/h_e) \times \ln (L/r)$ | Q = Flow<br>he = App<br>L = lengt<br>r = boreh | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |                              |  |
|------------|--------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------|--|
| Range of l | bydraulic conductivity                     |                                                |                                                      |                              |  |
| K =        | 1.9E-04 cm/s<br>3.8E-04 feet/min           | $Q = h_e =$                                    | 0.690<br>57.50                                       | ft <sup>3</sup> /min<br>feet |  |
| K =        | 5.7E-04 cm/s<br>1.1E-03 feet/min           | Q =<br>h <sub>e</sub> =                        |                                                      | ft <sup>3</sup> /min<br>feet |  |
| K =        | 6.6E-04 cm/s<br>1.3E-03 feet/min           | Trendline Slope                                | 24.42                                                |                              |  |




|                                                               |                                                  |                                     |                                                                                          |                                 | and the second sec |                                 |                         |                                          |                                 | $\sum_{i=1}^{n}$        | 0(1.1675-646           |
|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|------------------------------------------|---------------------------------|-------------------------|------------------------|
| Mor<br>Min<br>943.                                            | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | Malerte/CSSA                        |                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |                                          |                                 |                         |                        |
| 251<br>7<br>15-No                                             | 251<br>7<br>15-Nov-95                            |                                     |                                                                                          |                                 | Test Type:<br>Coastant head, Straddie packer<br>Gauge located downhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                         |                                          |                                 |                         |                        |
| Borehole diameter<br>Borehole radius<br>Test section location | 2                                                | 3.78<br>0.16<br>161.08              | inches<br>foct<br>foct below top of casing                                               | г и                             | True vertical depta calculation:<br>Top of laterval<br>Hole depth (ft) Ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al<br>ertical Depth (fi         | Hole depth (ft)         | Bottom of Interval<br>Vertical I         | interval<br>Vertical Deoth (M)  |                         |                        |
| Length of test interval<br>Gauge Depth<br>Static Water Level  | Bolios                                           | 186.44<br>25.36<br>154.70<br>169.60 | feet below top of cauing<br>feet<br>feet below top of casing<br>feet below top of casing | ~ # •                           | Above 160,00 Above<br>Below 170,00 Below<br>Vortical Analth of tan of Learners (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Above 159,9                     | Allove                  | Above<br>190.00 Above<br>190.00 Below    | 9.91<br>189.89                  |                         |                        |
|                                                               |                                                  |                                     | •                                                                                        |                                 | a range sa das sa salam mana a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66'na1 (11) w                   | V GFUCAI GEPHA GI       | veruesi deput di bollom di interval (11) | 146.33                          |                         |                        |
| -                                                             | 15:51:37                                         |                                     |                                                                                          |                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 Po                            | 3 Point Moving Averages | 5 <b>3</b> 8                             | 5 Point M                       | 5 Point Moving Averages |                        |
|                                                               | Elapsed time<br>(hours)                          | Elapsed time<br>(minutes)           | Measured Head<br>(feet of water)                                                         | Applied Head<br>(feet of water) | Q<br>(gaUmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applied Head<br>(feet of water) | Δ time<br>(mins)        | Average Q<br>(gaVmin)                    | Applied Head<br>(feet of water) | Δ time<br>(minutes)     | Average Q<br>(gal/min) |
|                                                               | 0.00                                             | 00000                               | 0.0                                                                                      | 19,06                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         | !                                        |                                 |                         |                        |
|                                                               | 80 O                                             | 0.000                               | 0010<br>0010                                                                             | 19.06<br>19.06                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 61<br>10                     | 2                       | ŝ                                        |                                 |                         |                        |
|                                                               | 00.0                                             | 011.0                               | 0.0                                                                                      | 19.06                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90.61                           | 00'0                    | 00.0                                     | 90.61                           | 00.0                    | 00.0                   |
|                                                               | 10.0                                             | 0.360                               | 00.0                                                                                     | 90.61<br>19.06                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>30.61</b><br>X0.61           | 8.9                     | 0.0                                      | 30.91<br>20.01                  | 0.0                     | 0.00                   |
|                                                               | 10.0                                             | 0.420                               | 00.0                                                                                     | 19.06                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.61                           | 89                      | 0.0                                      | 20,21<br>20,61                  | 10.0-                   | 0.0                    |
|                                                               | 10.0                                             | 0.600                               | -0.02<br>-0.03                                                                           | 10.61<br>10.91                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.61                           | -0.03                   | 0.00                                     | 10.61                           | £0 0-                   | 0.00                   |
|                                                               | 10.0                                             | 0.720                               | [0,0-                                                                                    | 19.03                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.41<br>10.41                  | 10 9                    | 000                                      | 19.04<br>10.01                  | (0:0-                   | 0.00                   |
|                                                               | 10.0                                             | 0.740                               | (0).0-<br>20 0                                                                           | E0.61                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | £0-61                           | 8.0                     | 00.00                                    | 60'61                           | 10 m                    | <b>0</b> 00            |
|                                                               | 0.02                                             | 0.960                               | 600-                                                                                     | 19.01                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.61                           | 0.0                     | 0.00                                     | 19.03                           | 00.00                   | 0.00                   |
|                                                               | 0.02                                             | 1.020                               | <b>(</b> 0) <del>0</del>                                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.41<br>10.61                  | 8.9                     | 90.0<br>52                               | E0.61                           | 00.00                   | 0.00                   |
|                                                               | 0.02                                             | 0+1-1                               | 0.0-                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to.61                           | 8                       | 0.00                                     | 50'61                           | 0.00                    | 00.0                   |
|                                                               | 0.02                                             | 007.1                               | (0.0)<br>0.00                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.61                           | 0.03                    | 0.00                                     | 19.04                           | 0.01                    | 00:0                   |
|                                                               | 0.02                                             | 01121                               | 000                                                                                      | 19.06                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.61<br>20.91                  | 0.0                     | 0.00                                     | 19.04                           | 0.03                    | 0.00                   |
|                                                               | 0.02                                             | 1.440                               | 00.00                                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.61                           | 80                      | 000                                      | 19.05                           | () 0<br>()              | 0.0                    |
|                                                               | £0.0                                             | 0051                                | 0.00                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.06                           | 0.0                     | 0.00                                     | 90.61                           | 00.0                    | 8.0                    |
|                                                               | 60 D                                             | 1.620                               | 000                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.06                           | 0.00                    | 0.00                                     | 19.06                           | 0.00                    | 0.0                    |
|                                                               | [0]0                                             | 1 740                               | <b>N</b> 010                                                                             | 90.61                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.06                           | 0.00                    | 00.00                                    | 19.07                           | 90.0                    | 00.0                   |
|                                                               | 0.03                                             | 1.860                               | 0.05                                                                                     | 907-61<br>11-61                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90.61                           | 9.0                     | 08.0                                     | 60.61                           | 0.11                    | 0.00                   |
|                                                               | 6.03                                             | 1.940                               | 11.0                                                                                     | 19.17                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.11                           | 11.0                    | 8 8                                      | 11.61                           | 0.12                    | 0.00                   |
|                                                               | 0.03                                             | 2.040                               | 0.12                                                                                     | 19.12                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.61<br>11.61                  | 0.01                    | 000<br>000                               | 19.14<br>19.17                  | 0.13                    | 0.0                    |
|                                                               | 6.04                                             | 2.100                               | 0.13                                                                                     | 19.19                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.18                           | 10'0                    | 000                                      | 19.77                           | 10.0                    | 8.8                    |
|                                                               | 10.0                                             | 2.220                               | 0.13                                                                                     | 19.19                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.91                           | 0.46                    | 00.0                                     | 02.61                           | 2.12                    | 8                      |
|                                                               | 10.0                                             | 2.280                               | 0.38                                                                                     | 19.61                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.04                           | 2.12                    | 00.00                                    | 20.41                           | 35.6                    | 800                    |
|                                                               | 50                                               | 1.540                               | 174                                                                                      | 01 IC                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |                                          |                                 |                         |                        |

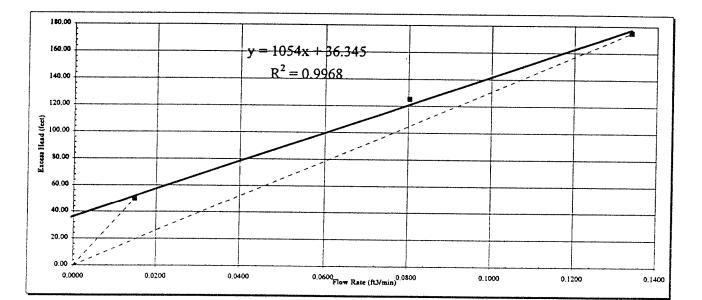
Ooklor Associates

23107A CHA, liqui Data

| Plot data used  | l in analysis |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 50.00           | 0.110         |
| 125.00          | 0.600         |
| 175.00          | 1.000         |



C:


| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole Interval Number

Plot data

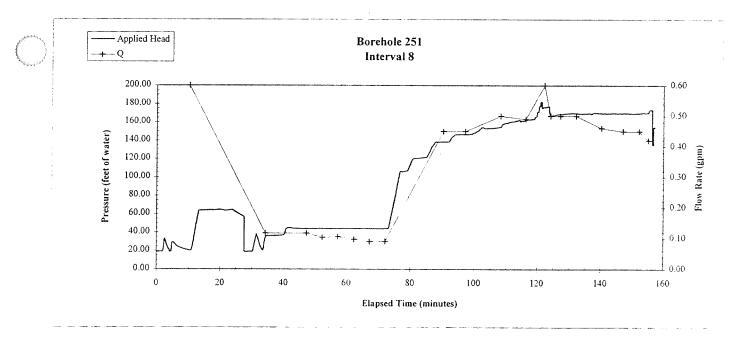
251

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gai/min)     | (ft <sup>3</sup> /min) |
| 50.00           | 0.110         | 0.0147                 |
| 125.00          | 0.600         | 0.0802                 |
| 175.00          | 1.000         | 0.1337                 |
|                 | ¥             |                        |



| <b>K</b> = 1/( | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | K = hydraulic conductivity(feet/min)Q = Flow rate $(ft^3/min)$ $h_e = Excess head$ (feet) $he = Applied head$ (feet) $r = borehole radius$ (feet) |
|----------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Range of l     | bydraulic conductivity                      |                                                                                                                                                   |
| K =            | 5.7E-06 cm/s<br>1.1E-05 feet/min            | $Q = 0.018 \text{ ft}^3/\text{min}$<br>$h_e = 50.00 \text{ feet}$                                                                                 |
| K =            | 1.5E-05 cm/s<br>2.9E-05 feet/min            | $Q = 0.161 \text{ ft}^3/\text{min}$<br>$h_e = 175.00 \text{ feet}$                                                                                |
| K =            | <b>1.5E-05 cm/s</b><br>3.0E-05 feet/min     | Trendline Slope 1054.00                                                                                                                           |




| 0(1,1672-646 |                                                  |                                                                                                                                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average Q<br>(gal/min)           |                    |                     | 00.00          | 00.00              | 0.0     | 0.00                | 0.0            | 0.00    | 0.00               | 0.00         | 0.00           | 000          | 00.0    | 00.0      | 0.0                | 000                                   | 0.00    | 0.00    | 0.00           | 0.0                | 000                 | 00.0           | 0.00  |
|--------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|---------------------|----------------|--------------------|---------|---------------------|----------------|---------|--------------------|--------------|----------------|--------------|---------|-----------|--------------------|---------------------------------------|---------|---------|----------------|--------------------|---------------------|----------------|-------|
|              |                                                  |                                                                                                                                                  |                                           | 5 Point Moving Averages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Δ time<br>(minutes)              |                    |                     | 00:0           | 0.0                | 000     | 000                 | 10.0           | 0.00    | 0.05               | 90.0         | 0.16           | 0.16<br>0.16 | 90.0    | 0.00      | 10.0               | 500                                   | ((,)    | 1.09    | 1.17           | 8 5                | 18.5                | 10.59          | 10.06 |
|              |                                                  | bepth (f)<br>139.9<br>1669                                                                                                                       | +C191                                     | 5 Point M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applied Head<br>(feet of water)  |                    |                     | 19.06          | 19.06<br>19.06     | 19.07   | 30.91<br>30.91      | 19.06          | 19.07   | 19.05              | 19,09        | [1.6]          | 19.20        | 15.21   | 19.24     | 19.24              | 19.22                                 | 16.61   | 19.52   | 67.61<br>11.04 | 21.62              | 11                  | 25.50          | 16.12 |
|              |                                                  | Bottom of interval<br>Vertical Depth (n)<br>Above 1<br>170,00 Bedow 1                                                                            | Vertical depth of bottom of laterval (ft) | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average Q<br>(gal/min)           |                    | 0000                | 0.00           | 00.0<br>00.0       | 00.0    | 0.00<br>00.00       | 0.00           | 0.0     | 90.0<br>00.0       | 00.0         | 0.00           | 0.00         | 0.00    | 0.0       | 00.0               | 0.00                                  | 0.00    | 0.0     | 00.0           | 0.00               | 0.00                | 0.00           | 00'0  |
|              |                                                  | Hole depth (f)<br>Abore<br>Below                                                                                                                 | ertical depth of l                        | 3 Point Moving Averages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Δ time<br>(mins)                 |                    | 00.0                | <b>10</b> 10   | B) ()              | 0.00    | 0 00<br>0 00        |                | 10.0    | 6.05               | 00.0         | 0.01<br>0.17   | 0.16         | 0.0     | 60.9<br>6 | 50.0               | 5.9                                   | 10.0    | 979     | 1.01           | 8                  | 4.72                | 28'S           | 5.87  |
|              |                                                  | er<br>in:<br>Tral<br>Vertical Depth (f) H<br>Above 1299                                                                                          | 135.96 V.                                 | 3 Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Applied Head<br>(feet of water)  |                    | 19.05               | T0.61          | 19.07              | 90.61   | 10.61               | 19.07          | 19.05   | 19.00              | 01.61        | 01.61<br>81.91 | 19.21        | 19.26   | 17.91     | 17.61              | 19.24                                 | 19.23   | 17.91   | 20.17          | 21.07              | 22.74               | 25.24          | 28.21 |
|              |                                                  | Ype:<br>ant beed, Syraddle pack<br>e located dewnhole<br>vertical depth calculatio<br>Top of lat<br>kpth (1)<br>13000<br>14000                   | Vertical depth of top of interval (ft)    | <ul> <li>A statistical statist<br/>Statistical statistical statisteps atatistical statistical statistical statistical statisti</li></ul> | Q<br>(gal/min)                   |                    |                     |                |                    |         |                     |                |         |                    |              |                |              |         |           |                    | • • • • • • • • • • • • • • • • • • • |         |         |                |                    |                     |                |       |
|              |                                                  | Test 7<br>Const<br>Gauge<br>Gauge<br>True<br>Hole c                                                                                              | Ve                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Applied Head<br>(feet of water)  | 19.10              | 50.61<br>50.61      | 19.05<br>19.09 | 19.05              | 19.06   | 60.61               | 19.05<br>19.05 | 19.06   | 19.09              | 11.61        | 11.61          | 19.26        | 19.27   | 11.61     | 19.26              |                                       | 19.23   |         |                |                    | 22.29               | 25.32<br>21.12 |       |
|              |                                                  | inches<br>fect<br>fect below top of casing<br>fect below top of casing<br>fect below ton of casing                                               | foot below top of casing                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Measured Head<br>(feet of water) | 10 0<br>10 0       | 10.0                | 10.0           | 10:0-              | 0000    | 0.03                | 10:0-          | 01.0    | £0.0               | 60.0<br>(0.0 | 0.05           | 97.0         | 67 D    | 0.11      | 0.20               | 910                                   | 0.15    | 0.53    | 1.25           | ¥.1                | 8                   | 61.0<br>63.9   |       |
|              | rte/CSSA                                         | 3.78<br>3.78<br>0.16<br>136.08<br>161.44<br>25.36                                                                                                | 169.60                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elapsed time<br>(minutes)        | 0000<br>09000      | 0.120               | 0.300          | 0.360              | 0.720   | 0,700               | 048.0          | 0.900   | 0.960              | 1.140        | 1.200          | 1.260        | 1.440   | 1.360     | 1.620              |                                       | 1.860   | 1.980   | 2.040          | 2.100              | 2.220               | 2.400          |       |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 251<br>8<br>16-Nov-95<br>16-Nov-95<br>Bottom                                                                                                     |                                           | а.<br>ВНССОД                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elapsed time<br>(hours)          | 0.00               | 0.0                 | 10.0           | 10.0               | 10:0    | 10.0                | 10.0           | 0.02    | 0.02               | 10.0         | 0.02           | 0.02         | 0.02    | 0.03      | 0 O                | (0 0                                  | 60.0    | 0.03    | 60.0           | <b>1</b> 0'0       | 100                 | 90.0           |       |
| Autor        | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date<br>Borchole diameter<br>Borchole radius<br>Teti section location<br>Length of test listerval<br>Gauge Depth | Static Water Level<br>General Lithology   | Sandsione<br>Start Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clock<br>Time                    | 8:57:48<br>8:57:52 | 8.37.55<br>II 57 54 | B 58.00        | 8.58.10<br>8.14.13 | 10.86.8 | 8:58:35<br>1: 41-14 | BC.35.3        | 1.58.42 | 8.58.46<br>8.58.44 | 8,58,56      | 8:59.00        | 11.45.4      | 8:39:14 | ¥:59:22   | 8.59.25<br>E 14 24 | 96,96,8                               | 8.59.40 | E.59.47 | 8.59.50        | 8:56:34<br>9 00:01 | 10:00'6<br>\$0:00'6 | 9.00.12        |       |

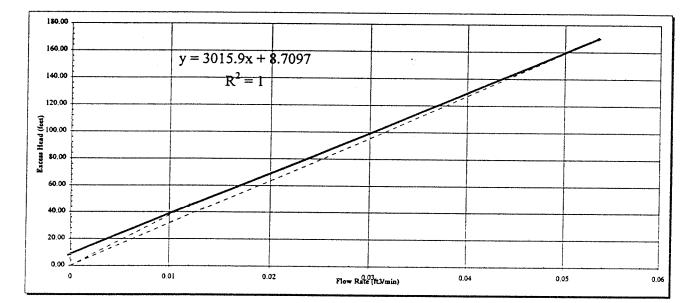
Ookdoor Associates

25108A CHA, liqui Data

#### Plot data used in analysis

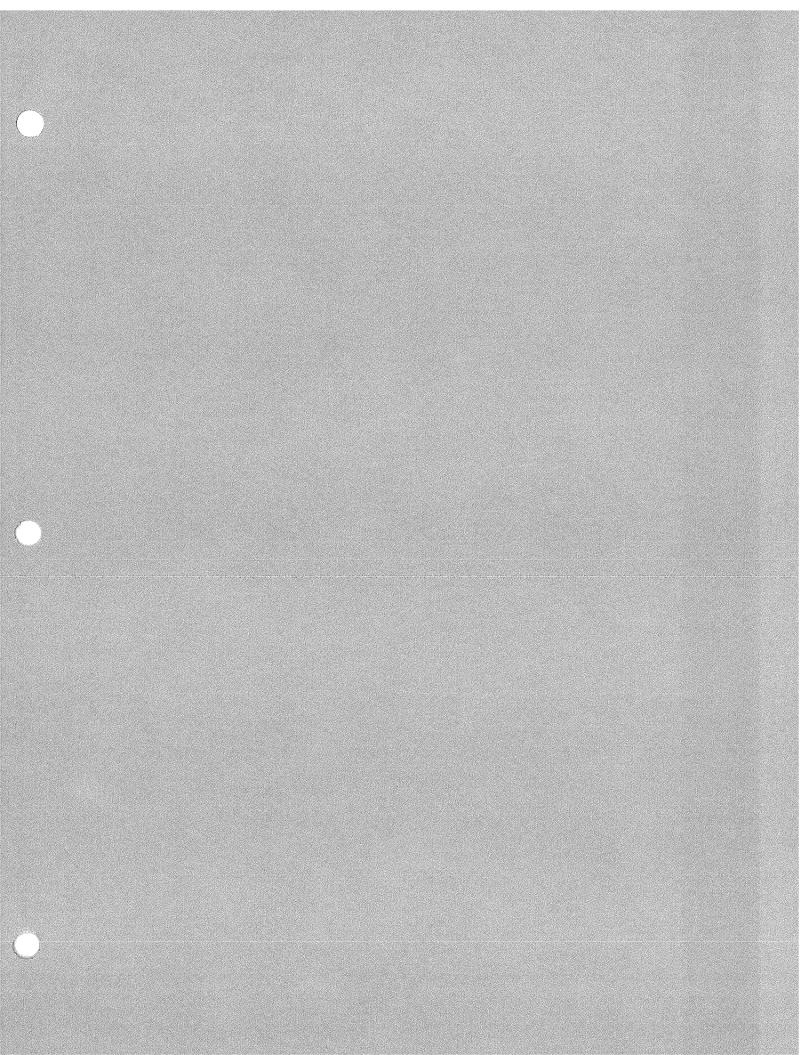
| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 45.00           | 0.090         |
| 170.00          | 0.400         |




| - Client    | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 251                   |

Borehole Interval Number

Plot data


8

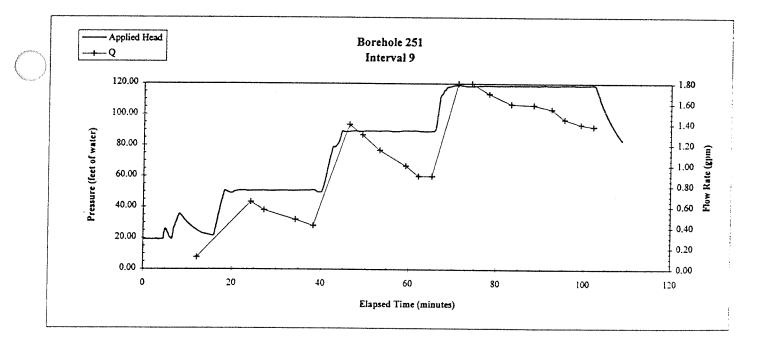
| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 45.00           | 0.090         | 0.0120                 |
| 170.00          | 0,400         | 0.0535                 |



| K = 1/(    | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | $Q = Flow$ $h_e = Exce$ $he = App$ |                 | ·                            | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------------|------------------------------------|-----------------|------------------------------|--------------------------------------------------------------------|
| Range of l | hydraulic conductivity                      |                                    |                 |                              |                                                                    |
| K =        | 5.2E-06 cm/s<br>1.0E-05 feet/min            | Q =<br>h <sub>e</sub> =            | 0.014<br>45.00  | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | 6.1E-06 cm/s<br>1.2E-05 feet/min            | Q =<br>h <sub>e</sub> =            | 0.064<br>170.00 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | <b>5.4E-06 cm/s</b><br>1.1E-05 feet/min     | Trendline Slope                    | 3015.90         |                              |                                                                    |

Ċ




| 061.1975-648      |                                                  |                                                                       |                                                                                          |                                                      |                                |                         | Average Q                        | (gal/min)       |                     |                                  | 0.00           | 0.00           | 000        | 0.0          | 0.00    | 8.0       | 0.00     | 0.00           | 0.00     | 8.0          | 00.0     | 0.00     | 00.0        | 0.00         | 000            | 0.00     | 0.00         | 0.00       | 0.00           | 0.00              | 0.00            | 0000           |
|-------------------|--------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|-------------------------|----------------------------------|-----------------|---------------------|----------------------------------|----------------|----------------|------------|--------------|---------|-----------|----------|----------------|----------|--------------|----------|----------|-------------|--------------|----------------|----------|--------------|------------|----------------|-------------------|-----------------|----------------|
|                   |                                                  |                                                                       |                                                                                          |                                                      |                                | 5 Point Moving Averages | ∆ time                           | (minutes)       |                     |                                  | 10.0           | [0]0           | (0)<br>100 | 60.0         | 10.0-   | 0000      | 10.0-    | 0 02           | 10.02    | 0.02         | 0.0      | 0.02     | 0.00        | 10.0         | 0.07           | 0.03     | 0.00         | . 10.0-    | -0.07          | £0.0 <del>.</del> | (0.0-<br>0.02 0 | 0.00<br>90.0   |
|                   |                                                  |                                                                       | liaterval<br>Vertical Depth (ft)<br>Abore (139.9)                                        | <b>139.92</b>                                        | 136.36                         | 5 Point M               | Applied Head                     | (ICCL OF MEICL) |                     |                                  | 19.05          | 19.08<br>19.06 | 60'61      | 19.10        | 19.10   | 11.61     | 11.61    | 11.61          | 19.11    | 11.61        | 11.61    | 11.61    | 19.12       | 11.61        | 19.14          | 19.15    | 19.16        | 51.61      | 51.41<br>51.51 | [].[]<br>[] e i   | 19.13<br>19.17  | 71-61<br>51-61 |
|                   |                                                  |                                                                       | Bottom of<br>130.00                                                                      | 140.00 Bolow                                         | (II) INFERIOR BI DECEMBI (II)  | 1                       | Average Q<br>(sal/min)           |                 |                     | 00'0                             | 0.00           | 00.0           | 0.00       | 0.0          | 0.00    | 0.0       | 0.00     | 000            | 0.00     | 0.00         | 0.00     | 8.0      | 000         | 0.0          | 0.00           | 0.00     | 0.0          | 00.0       | 0.00           | 0.00              | 00.0            | 000            |
|                   |                                                  |                                                                       | Hole depth (f)<br>Abore                                                                  | Bickow<br>and a family for the                       |                                | 3 Point Moving Averages | ∆ time<br>(mine)                 | Ì               |                     | 10.0                             | 8.3            | 6.01           | 0.03       | 0.00         | 10.0    | 10.0      | 10.0     | 10.0-<br>10.0- | 00.00    | 10.0         | 0.02     | 10.0-    | 10.0        | 0.03         | 0.03           | 0.04     | 8 2          |            | 100            | 0.0               | 0.0             | 00.0           |
|                   |                                                  |                                                                       | , <sup>4</sup>                                                                           | 10.44<br>V                                           |                                | 3 Point                 | Applied Head<br>(feet of water)  | •               |                     | 19,08                            | 10.41<br>10.01 | 60.61          | 19.10      | 11.41        | 19.10   | 19.11     | 01.91    | 11.61          | 19.10    | 11.61        | 11.61    | 21.21    | 19.12       | 19.13        | 19.14          | 19.16    | 19.16        | 11.61      | [].6]          | 19.12             | 19.12           | 19.12          |
|                   |                                                  | addle packer.<br>Bbole                                                | i calculation:<br>Top of interval<br>tito, Above<br>tito, Above                          | of interval (ft)                                     |                                |                         |                                  |                 |                     |                                  |                |                |            |              |         |           | siy.     |                |          | ·            |          | ×        |             |              |                |          |              |            |                | 5.1g+             |                 | -<br>241       |
| $\langle \rangle$ |                                                  | Test Type:<br>Constant bead, Straddle packer<br>Gauge located dwahole | True vertical depita calculation:<br>Top of latery<br>Vove apth (f)<br>Vove 1000 A       | Vertical depth of top of interval ((t)               |                                | -<br>-<br>-             | Q<br>(gal/min)                   |                 |                     | - 17 - 1<br>- 17<br>- 17<br>- 17 |                |                |            |              |         |           |          |                |          |              |          |          |             |              |                |          |              |            |                |                   |                 |                |
|                   |                                                  |                                                                       |                                                                                          |                                                      |                                |                         | Applied Head<br>(feet of water)  | 19.07           | 19.07               | 19 07                            | 19.07          | 60 61          | 01.91      | 19.10        | 11.21   | 19 CA     | 19.10    | 19.10          | 11-61    | 01.41        | 19.12    | 11.61    | 19.12       | 19.12        | 61.61<br>51.91 | 19.19    | 21.61        | 19.15      | 19.12          | 19.12             | 19.12           | 19.12          |
|                   |                                                  |                                                                       | inches<br>foot<br>foot<br>foot below top of casing<br>foot below top of casing           | fect below top of caring<br>fect below top of caring |                                |                         | Measured Head<br>(feet of water) | 10.0            | 10'0                | 0.01                             | 10:0           | 0.03           | 90.0       | <b>H</b> 0:0 | 0.05    | 0.05      | 0.04     | 0.04           | 0.03     | 20.0<br>20.0 | 0.0k     | 0.05     | 90.0<br>201 | 90.0<br>90.0 | 60.0           | 6.13     | 0.09         | 60.0       | 0.06           | 0.06              | 90 G            | 90.0           |
|                   | 1e/CSSA                                          |                                                                       |                                                                                          | 104.70                                               |                                |                         | Elapsed time<br>(minutes)        | 0.000           | 0.060               | 0.140                            | 0.300          | 0.360<br>0.420 | 01-5-0     | 0.600        | 0.720   | 0.840     | 0.960    | 1.040          | 1.140    | 1.260        | 086.1    | 1.440    | 1 670       | 1 680        | 1.800          | 1.860    | 1.920        | 2.040      | 2.100          | 2.220             | 042.2           | P              |
|                   | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 251<br>9<br>16-Nov-95                                                 | Top<br>Bottom                                                                            |                                                      |                                | 11:37:49                | Elapsed time<br>(hours)          | 0.00            | 0.0                 | 0.00                             | (0)0           | 10.0           | 0.01       | 10.0         | 10.0    | 10.0      | 0.02     | 0.02           | 0.02     | 0.02         | 0.02     | 20.0     | £0:0        | 0.01         | 0.03           | 0.03     | (0.0<br>10.0 | <b>100</b> | 100            | 100               | 10.0            |                |
| W.nc/L            | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                  | Borebole diameter<br>Borebole radius<br>Test section location<br>Length of test interval | vauge Depth<br>Static Water Level                    | General Lithology<br>Sandstone | Start Time              | Clock<br>Time                    | 11:57.49        | 11.37.56<br>827.511 | 11.58,00                         | 11:58.07       | 113611         | 11:58:21   | 11.54.25     | 11.5836 | 9E(\$6)11 | 11:54:47 | 11:54:54       | 10.45.11 | 11:59:05     | 11:59:12 | 12,45,11 | 11.59.26    | 00.92.11     | 11.42.11       | 11.59.41 | 12.92.11     | 11-59-51   | 12:00:02       | 12.00.06          | 12.00.09        |                |

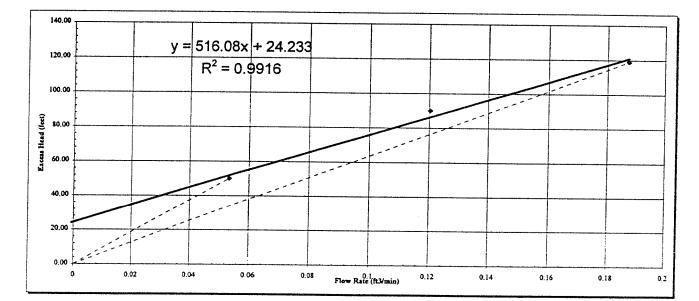
25109A.CHA, liqui Dala

**Golder Associates** 

### Plot data used in analysis

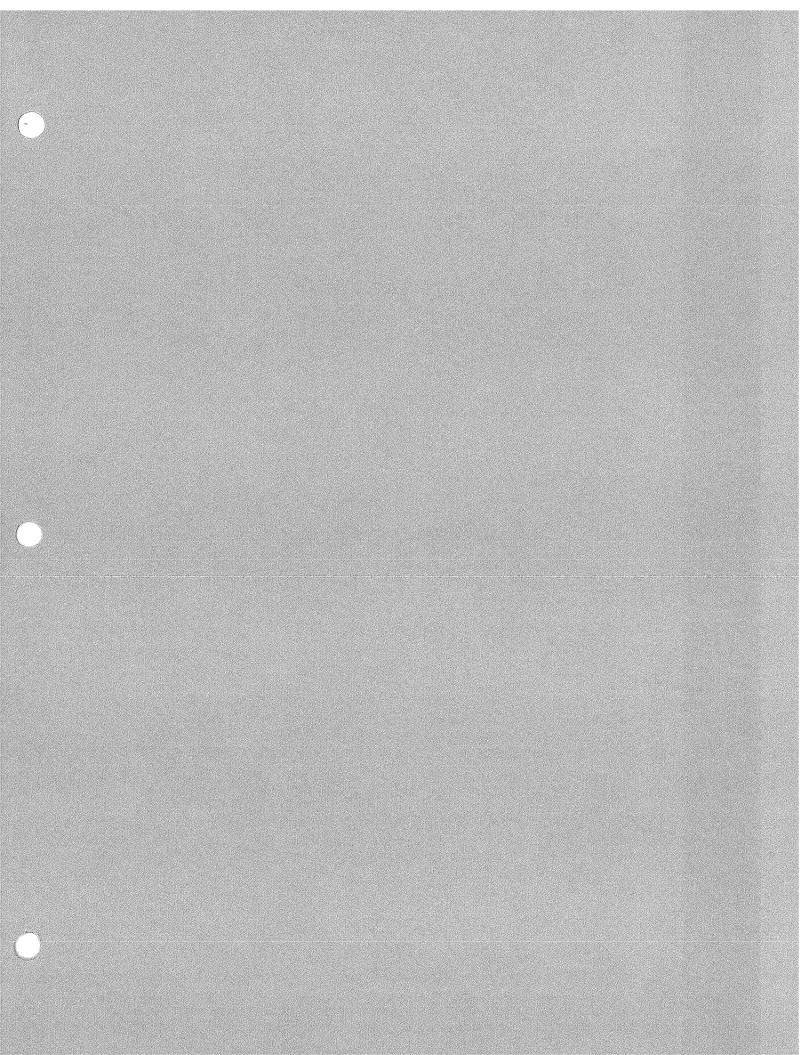
| Applied Head             | Flow Rate (Q)           |
|--------------------------|-------------------------|
| (feet of water)          | (gal/min)               |
| 50.00<br>90.00<br>119.00 | 0.400<br>0.900<br>1.400 |




| Client      | Morrison-Maierie/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole 251 Interval Number

Plot data

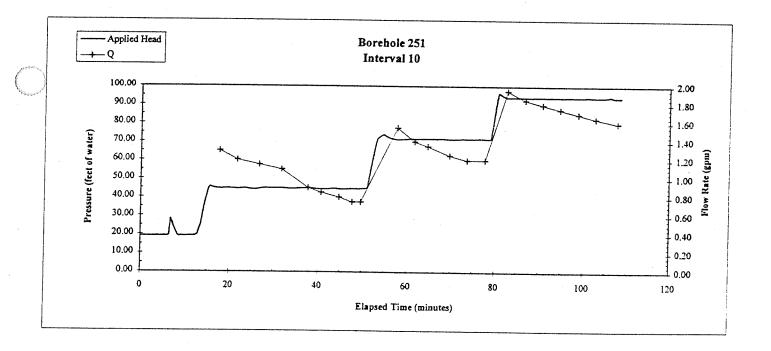

9

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 50.00           | 0,400         | 0.0535                 |
| 90.00           | 0.900         | 0.1203                 |
| 119.00          | 1.400         | 0.1872                 |



| K = 1/(    | $(2\pi L) \ge (Q/h_e) \ge \ln (L/r)$    | $K = hydrQ = Flowh_e = Excrhe = Appr = boreh$ | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |                              |  |
|------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|------------------------------|--|
| Range of I | bydraulic conductivity                  |                                               |                                                                    |                              |  |
| K =        | 2.1E-05 cm/s<br>4.1E-05 feet/min        | Q =<br>h <sub>e</sub> =                       | 0.064<br>50.00                                                     | ft <sup>3</sup> /min<br>feet |  |
| K =        | 3.1E-05 cm/s<br>6.0E-05 feet/min        | Q =<br>h <sub>e</sub> =                       | 0.225<br>119.00                                                    | ft <sup>3</sup> /min<br>feet |  |
| K =        | <b>3.1E-05</b> cm/s<br>6.2E-05 feet/min | Trendline Slope                               | 516.08                                                             |                              |  |

C

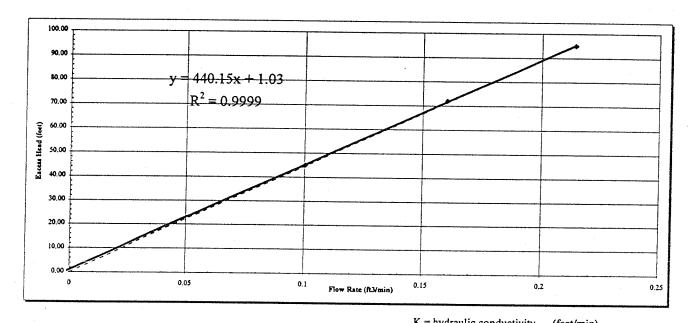



| 0111612-146 |                                                                                                                                                                                                 |                                              | Average Q<br>(gal/min)             |               |                | 0.0            | 000                  | 0.00           | 0.0                    | 800      | 0.00           | 0.00         | 0.00     | 000      | 0.00     | 00.0     | 0.00           | 0.00     | 000      | 0.00     | 0.00       | 0.00           | 0,00       | 00.0     | 00.0            | 8.0     | 800          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|---------------|----------------|----------------|----------------------|----------------|------------------------|----------|----------------|--------------|----------|----------|----------|----------|----------------|----------|----------|----------|------------|----------------|------------|----------|-----------------|---------|--------------|
|             |                                                                                                                                                                                                 | 5 Point Moving Averages                      | ∆ time<br>(minutes)                |               |                | <b>1</b> 0'0   | 00.0                 | 0.04           | 00.0                   | 800      | 10 0           | <b>1</b> 0'0 | 00.0     | 8.0      | 0.00     | 19 17    | 0 00           | 0.0      | 10.0     | 10.0     | 0.00       | 0.00           | 0 00       | 100      | 00.0            | 000     | 8 8          |
|             | iaterval<br>Vertical Depth (1)<br>Above 109.94<br>Below 119.94                                                                                                                                  | 5 Point M                                    | Applied Head<br>(feet of water)    |               |                | <b>30.61</b>   | 90.61<br>90.61       | 30.61          | <b>30.</b> 21<br>70.21 | 19.01    | 19.07          | 19.07        | 19.01    | 19.01    | 30.61    | 19.04    | 19.04          | 30.91    | 19.05    | 19.07    | 19.07      | 19.07          | 19.07      | 19.07    | 19,04<br>19 fac | 19.00   | 10.61        |
|             | Hole depth (ft)<br>Above active<br>Above 110.00 Above<br>Below 120.00 Below                                                                                                                     | 2                                            | Average Q<br>(gal/min)             |               | 0,00           | 0.0            | 0000                 | 0.00           | 90.0<br>90.0           | 00.00    | 0.00           | 0.00         | 800      | 0.0      | 0000     | 0:00     | 0.00           | 000      | 0.00     | 0.00     | 0.00       | 00.0           | 0.0<br>0.0 | 000      | 00.0            | 000     | 000          |
|             | Hole depth (f)<br>Abore<br>Bdow<br>Voorteal deevth of h                                                                                                                                         | 3 Point Moving Averages                      | ∆ time<br>(mins)                   |               | 0.00           | 8.9            | 9.05                 | \$0.0          | 10 Q                   | 0.01     | 0.04           | 00.0         |          | 0.0      | 00.0     | 0.0      | 10.9<br>20.9   | 10.0     | 0.0      | 0,00     | 10.0       | 00:00          | 100        |          | 80.0            | 00'0    | 0.00         |
|             | 1 Depth (f)<br>80.0<br>85.55                                                                                                                                                                    | 3 Point                                      | Applied Head<br>(feet of water)    |               | 19.04          | 90.61<br>19.05 | 20.61                | 19.06<br>20.01 | 19.04                  | 90.61    | 19.06          | 19.06        | 19.05    | 10.01    | 19.04    | 10.61    | 10.61<br>10 Pt | 19.01    | 19.06    | 30.61    | 19.07      | 19.07          | 10.41      | 19.06    | 19.06           | 19.04   | 19.04        |
| $\bigcirc$  | Straddle pack<br>downhole<br>ppth calculatio<br>Top of lat<br>80,00                                                                                                                             |                                              | Q<br>(gal/min)                     |               |                |                |                      |                |                        |          |                |              |          |          |          | •        |                |          |          |          |            |                | 1          |          |                 |         |              |
|             | Test Type:<br>Test Type:<br>Constant head,<br>Gauge located<br>True vertical d<br>Hole depth (ft)<br>Below<br>Vertical depth                                                                    |                                              | Applied Head<br>(feet of water) (g |               | 19.08<br>19.08 |                |                      | 19.05          |                        |          | 19.01<br>14.14 |              |          |          |          | 19.04    |                |          |          |          |            | 19.64<br>19.01 |            |          | 80.41           | 19.01   | 19.08        |
|             | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                                  |                                              | Measured Head<br>(feet of water)   | -0.04<br>0.02 | 0.02<br>0.02   | <b>10</b> .0   | [0] Q                | 70.0           | 10.0                   | 0.01     | 0.02           | 0.02         | 0.02     | 0.02     | 0.02     | 10.0     | 10.0           | 0.02     | 0.02     | 0.02     | 70'0       | 20.0           | 0.02       | 20.0     | 20.0            | 0.02    | 0.02         |
|             |                                                                                                                                                                                                 |                                              | Elapsed time<br>(minutes)          | 0.000         | 0.120<br>0.180 | 0.240          | 0.360                | 0.540          | 0.600                  | 0.720    | 0,840          | 0.960        | 1.020    | 0+1-1    | 1.200    | 1.500    | 1.440          | 1.560    | 1.620    | 010      | 000 I      | 1.980          | 2 040      | 2.100    | 2.220           | 2.280   | 2.340        |
|             | Morrison-Malerte/CSSA<br>Miuer Flat<br>943-27691<br>251<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                           | 14.01:16                                     | time<br>s)                         | 00.0          | 000            | 00.0           | 0.0<br>10.0          | 10.0           | 10.0                   | 100      | 100            | 0.02         | 0.02     | 0.02     | 70.0     | 0.07     | 0.02           | £0:0     | [0]0     | 5070     | 10.0       | £0'0           | 0.03       | P0:0     | 10.0            | 50      | <b>1</b> 0.0 |
| 1Jury       | Client<br>Site<br>Project No.<br>Borchole<br>Test Number<br>Test Number<br>Test Late<br>Borchole traius<br>Test action location<br>Length of test interval<br>Gauge Depth<br>Static Water Level | General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                      | 14.01.16      | 14.01.23       | 94:01:30       | 14.01.38<br>14.01.41 | 14.01.48       | 14.01.52               | 14.01.59 | 14 02.06       | 14.02.14     | 14.02:17 | 14.02:24 | 14.02.32 | 14.02.39 | 14.02.42       | 14.02:50 | 14.02:53 | 10.10.11 | 14, 03, 04 | 14 03 15       | 14.03.18   | 14.00.12 | 14 03.29        | [[ [0]] | 96.00.41     |

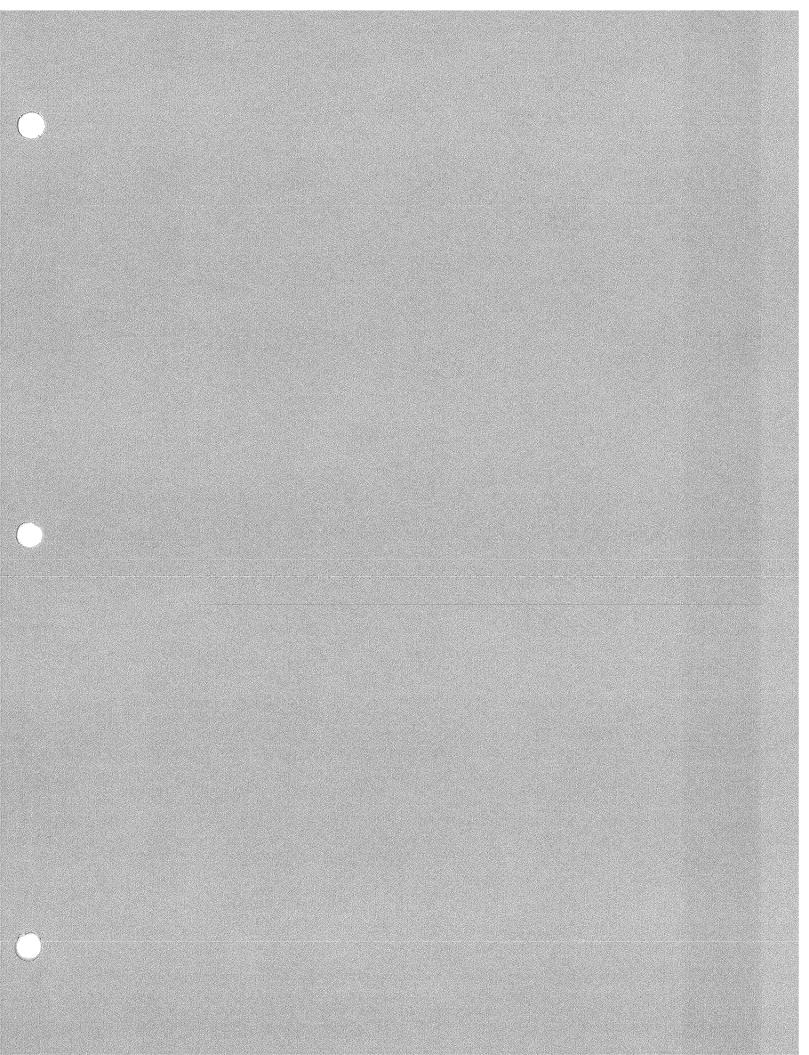
**Golder Associates** 

251010A CHA, hqui Data

| Plot data i             | used in analysis        |
|-------------------------|-------------------------|
| Applied Head            | Flow Rate (Q)           |
| (feet of water)         | (gal/min)               |
| 45.00<br>72.00<br>95.00 | 0.750<br>1.200<br>1.600 |




| ۹. | Client      | Morrison-Maierle/CSSA |
|----|-------------|-----------------------|
|    | Site        | Miner Flat            |
|    | Project No. | 943-27691             |
|    | Borehole    | 251                   |

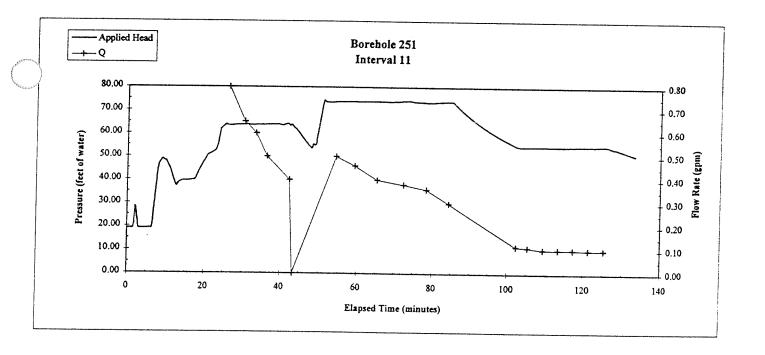

Interval Number

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 45.00           | 0.750         | 0.1003                 |
| 72.00           | 1.200         | 0.1604                 |
| 95.00           | 1.600         | 0.2139                 |



| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | $Q = Flov$ $h_e = Exc$ $he = App$ | K = hydraulic conductivity<br>Q = Flow rate<br>$h_e$ = Excess head<br>he = Applied head<br>r = borehole radius |                              |  |  |  |  |  |  |
|------------|-----------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Range of I | hydraulic conductivity                  |                                   |                                                                                                                |                              |  |  |  |  |  |  |
| K =        | 4.3E-05 cm/s<br>8.5E-05 feet/min        | Q =<br>h <sub>e</sub> =           | 0.120<br>45.00                                                                                                 | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =        | 4.4E-05 cm/s<br>8.6E-05 feet/min        | Q =<br>h <sub>e</sub> =           | 0.257<br>95.00                                                                                                 | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =        | <b>3.7E-05 cm/s</b><br>7.2E-05 feet/min | Trendline Slope                   | 440.15                                                                                                         |                              |  |  |  |  |  |  |



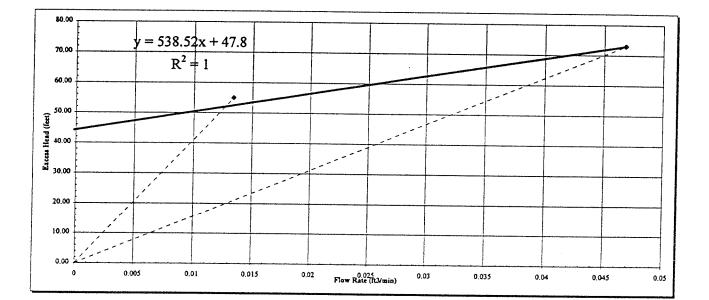

| 061,1875-648 |                                                  |                                                                                                            |                                                                                                                                     | 18 C                    | •                               | (gal/min)                        | 0.00                             | 0.00                 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | 0000                 | 000                  | 8 8 8                                  | 000                  | 00.0                 | 000                  | 0.0                  | 0.00           | 800      | 0.00                 | 0.00     | 8°0<br>8°0       |
|--------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------|-------------------------------------------------------------------|----------------------|----------------------|----------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------|----------------------|----------|------------------|
|              |                                                  |                                                                                                            |                                                                                                                                     | 5 Point Moving Averages | Δ time                          |                                  | 0.00                             | 0.00                 | 10'0<br>10'0                                                      | 000                  | 990                  | 10.0                                   | (0,0<br>(0,0         | [0]0                 | 107                  | 410                  | 5.71<br>7.60   | 04.7     | 90°5                 | 2.91     | 117              |
|              |                                                  |                                                                                                            | laterval<br>Vertical Depia (n)<br>Above 79.96<br>Below 89.33<br>Al (n) 86.39                                                        | 5 Point 7               | Applied Head<br>(feet of water) |                                  | 30.01<br>20.01                   | 80.61<br>20.61       | 19.01<br>19.02                                                    | 19.09<br>19.09       | 90.91<br>90.91       | 19.0 <del>9</del><br>19.0 <del>9</del> | 19.09<br>19.10       | 11.61<br>01.61       | 19.41<br>19.80       | 20.58                | 00.12<br>EC.ES | 24.99    | 36.38<br>7.40        | 27.72    | 26.34<br>26.34   |
|              |                                                  |                                                                                                            | Bottom of interval<br>Hole depth (n) Vertical<br>Above 80.00 Above<br>Below 80.00 Below<br>Vertical depth of bottom of interval (n) | 1986                    | Average ()<br>(gal/min)         |                                  | 000<br>0000<br>0000              | 00.0                 | 0.00                                                              | 0.0<br>0.8           | 00.0<br>00.0         | 0.00                                   | 00.00<br>00.00       | 00.00                | 0,00                 | 00.0                 | 0.00           | 0.00     | 0.0                  | 0.00     | 00 <sup>.0</sup> |
|              |                                                  |                                                                                                            | Hole depth (f)<br>Above<br>Below<br>Vertical depth of                                                                               | 3 Point Moving Averages | ∆ time<br>(mins)                | 2                                | 88                               | 00.0<br>20.0         | 00'0<br>00'0                                                      | 9.00<br>9.00         | 00.0<br>10.0         | 888                                    | 19                   | 0.0                  | 0.40<br>1.07         | <u>8</u> 1           | 4.16<br>6      | 17       | 110                  | 11.9     | <b>6</b> 77      |
|              |                                                  |                                                                                                            | cal Depth (n)                                                                                                                       | 3 Point                 | Applied Head<br>(feet of water) | 19.06                            | 19.06<br>19.06                   | 19.07                | 90,91<br>90,91                                                    | 60'61<br>            | 60.61<br>60.61       | 60 61<br>60 61                         | 19.10<br>19.11       | 1.61                 | 19.61                | 21.42                | 23.10<br>25 14 | 26.92    | 27.89                | 28.20    | 20,12<br>26,86   |
| $\bigcirc$   |                                                  | Test Type:<br>Constant kesd, Straddle packer<br>Gauge becated downhole<br>True vertical depth calculation: | E doj                                                                                                                               |                         | Q<br>(gal/min)                  |                                  |                                  |                      |                                                                   |                      |                      |                                        |                      |                      |                      |                      |                |          |                      |          |                  |
|              |                                                  |                                                                                                            |                                                                                                                                     | -                       | Applied Head<br>(feet of water) |                                  | 00.91<br>19.06<br>19.06          |                      |                                                                   |                      |                      |                                        |                      |                      |                      | 21.07<br>21.01       |                |          | 28.46<br>28.01       |          | 36.82            |
|              |                                                  | inches<br>feet                                                                                             | feet below top of casing<br>feet below top of casing<br>feet<br>feet below top of casing<br>feet below top of casing                | , i i                   | (feet of water)                 | 90.0<br>93.0<br>93.0             | 3 3                              | 0.00                 | 0.0<br>0.0                                                        | 0.03                 | 0.0<br>0.0           | 0.03                                   | 900                  | 900                  | 60<br>1.1            | 2.01                 | 6.16<br>       | C1.3     | 56'B                 | 9.07     | 1.76             |
|              | rle/CSSA                                         | 3.78<br>0.16                                                                                               | 61.08<br>86.44<br>25.36<br>54.70<br>169.60                                                                                          | Elaosed time            | (minutes)                       | 0.060<br>0.120<br>0.130          | 09E.0                            | 0.420                | 0.600<br>0.660<br>0.744                                           | 0.840                | 080.1                | 1.200                                  | 0801                 | 1.560                | 1.640                | 1.160                | 1.940<br>2.040 | 2.100    | 2.220                | 2,240    | •                |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 251<br>11<br>16-No                                                                                         | Top<br>Bottom                                                                                                                       | Elapsed time            | (hours)<br>0.00                 | 00.0<br>00.0                     | 10'0                             | 10'0                 | 10.0                                                              | 10.0                 | 0.02                 | 0.02<br>0.02                           | 0.02                 | 000<br>000           | (0 0                 | 0.01                 | 0.03<br>0.03   | 0.04     | 0.04<br>0.04         | 40 D     |                  |
| 100<br>Vite  | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date<br>Borebole diameter<br>Borebole radius                               | reti tectuoa locatioa<br>Length of test interval<br>Gauge Depth<br>Static Water Level<br>General Lithology<br>Statidione            | Start Time<br>Clock     | Time<br>Istaa                   | 16:15:42<br>16:15:45<br>16:15:49 | 16:15:56<br>16:16:00<br>16:16:01 | 16:16:10<br>16:16:14 | 16.16.18<br>16.16.25                                              | 16:16:28<br>16:16:36 | 16:16:43<br>16:16:46 | 16.16:50<br>16:16:54                   | 16:17:01<br>16:17:04 | 16:17:12<br>16:17:15 | 16.17.19<br>16.17.20 | 00171:01<br>77:71:01 | 04:17:40       | 16.17.44 | 16:17:51<br>16:17:55 | 10.17.38 |                  |

**Golder Associates** 

251011A CHA, hput Data

| Plot data use   | ed in analysis |
|-----------------|----------------|
| Applied Head    | Flow Rate (Q)  |
| (feet of water) | (gal/min)      |
| 73.00<br>55.00  | 0.350<br>0.100 |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole 251 Interval Number

Plot data

11

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 73.00           | 0.350         | 0.0468                 |
| 55.00           | 0.100         | 0.0134                 |



K = hydraulic conductivity

L = length of interval tested

Q = Flow rate

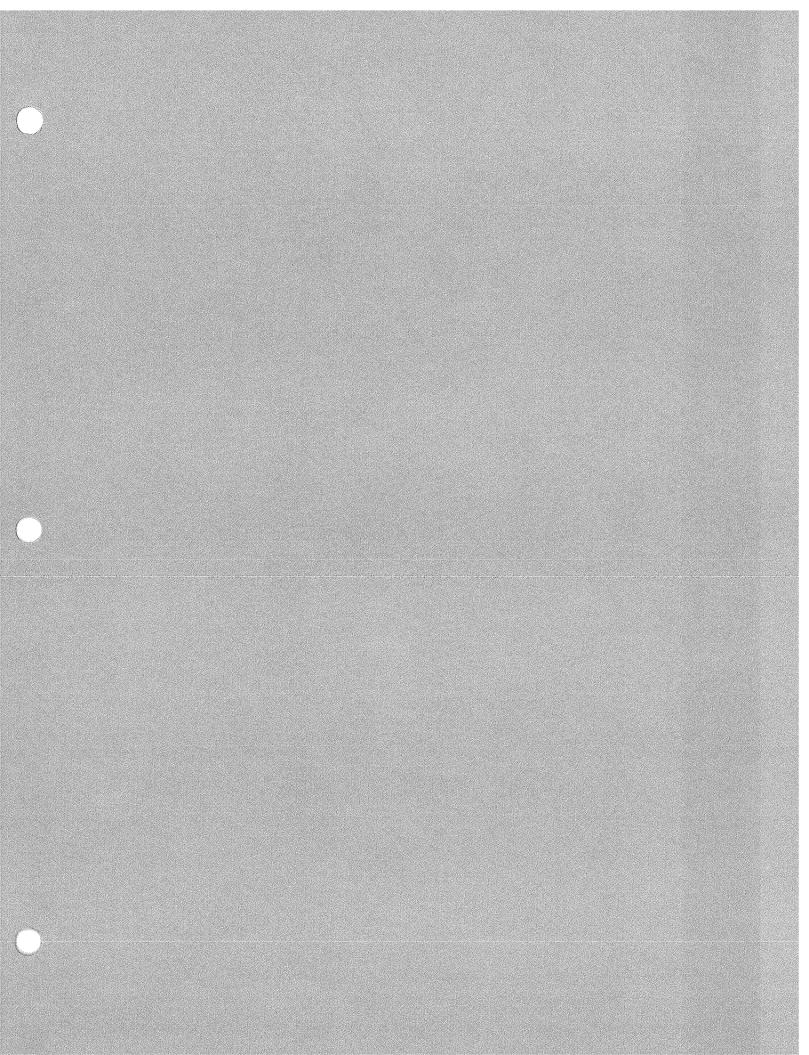
 $h_e = Excess head$ 

he = Applied head

(feet/min)

(ft<sup>3</sup>/min)

(feet)

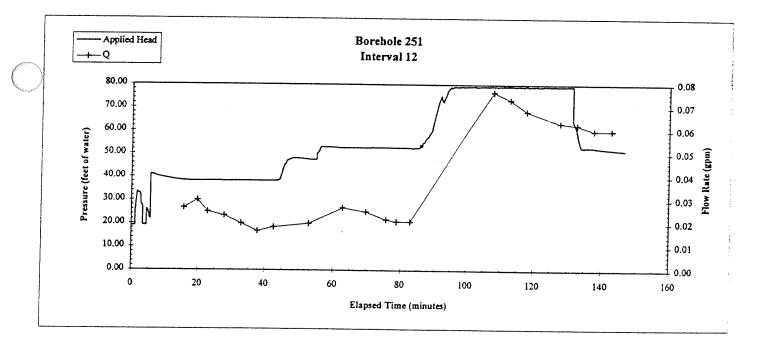

(feet)

(feet)

 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

Range of hydraulic conductivity

| K = | 1.2E-05 cm/s                            | Q =              | 0.056  | ft <sup>3</sup> /min |
|-----|-----------------------------------------|------------------|--------|----------------------|
|     | 2.5E-05 feet/min                        | h <sub>e</sub> = | 73.00  | feet                 |
| K = | <b>4.7E-06 cm/s</b>                     | Q =              | 0.016  | ft <sup>3</sup> /min |
|     | 9.3E-06 feet/min                        | h <sub>e</sub> = | 55.00  | feet                 |
| K = | <b>3.0E-05 cm/s</b><br>5.9E-05 feet/min | Trendline Slope  | 538.52 |                      |



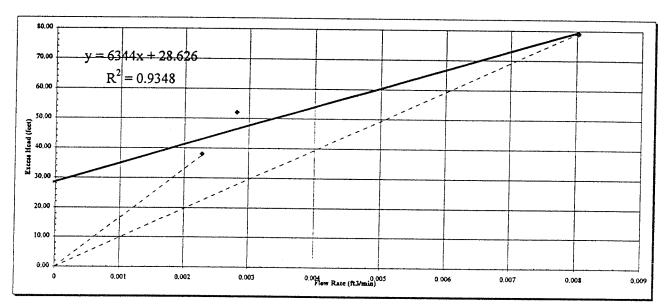

| 0(1.1672-614 |                                                  |                                                                      |                                      |                                  |                                                               |                                           |                             | 8                       | Average Q                        | (gal/min)       |                   |            | 2000    | 0.0     | 0.00               | 0.00          | 00.0                                                                                                            | 000                | 0.00    | 0.00    | 8.0          | 0.00    | 0.00           | 0.00    | 0.00           | 000               | 000     | 0.00    | 00.00            | 0.00   | 0.00           | 0.00         | 0.0     | 00.0   | 0.00  |
|--------------|--------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|----------------------------------|---------------------------------------------------------------|-------------------------------------------|-----------------------------|-------------------------|----------------------------------|-----------------|-------------------|------------|---------|---------|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------|--------------------|---------|---------|--------------|---------|----------------|---------|----------------|-------------------|---------|---------|------------------|--------|----------------|--------------|---------|--------|-------|
|              |                                                  |                                                                      |                                      |                                  |                                                               |                                           |                             | 5 Point Moving Averages | Δtime                            | (minutes)       |                   |            | 100     | 10.0    | 10'0-              | 10.0-         | 00.0                                                                                                            | 100                | 0.02    | 0.23    | 6:39         | 16.01   | 12.27          | 2.81    | 8              |                   | 10.4-   | -6.29   | 101              | ¥5'L-  | -0.02          | -0.05<br>200 | 60 Q    | 100    | 90.0  |
|              |                                                  |                                                                      |                                      | linterval<br>Vertical Denth (0)  | (11)                                                          | 61.41                                     |                             | 5 Point M               | Applied Head                     | (feet of water) |                   |            | 19.01   | 10.61   | 10'61              | 00.61         | 00.61                                                                                                           | 19.00              | 19.00   | 19.05   | 12.62        | 25.92   | 28.42          | 30.21   | 30.6]<br>29.7e | 28.24             | 13.77   | 23.96   | 16.52            | 20.71  | 81.91<br>10 to | 19.15        | 1.41    | 41,91  | 19.14 |
|              |                                                  |                                                                      |                                      | Bottom of interval<br>Vertical 1 | 60.00 Above<br>70.00 Bclow                                    | Vertical depth of bottom of interval (ft) |                             | ges                     | Average Q                        | (CIIII/IEZ)     |                   | 000        | 0.00    | 00.00   | 0.0                | 00.0          | 0.00                                                                                                            | 0.00               | 0.00    | 00.0    | 0.00         | 0.00    | 0.00           | 000     | 00.0           | 0.00              | 00.00   | 0.00    | 00'0             | 00.0   | 8.0            | 0.0          | 0.00    | 0.00   | 0.00  |
|              |                                                  |                                                                      |                                      | Hale depth (N)                   | Above<br>Below                                                | 'ertical depth of b                       |                             | 3 Point Moving Averages | A time<br>(mine)                 | (*****)         |                   | 10.0-      | 0.00    | 0.00    | 8.9<br>10 4        | 1019          | 8.0                                                                                                             |                    | 89      | 20.0    | 5            | 14.20   | 7.13           | 2       | đ              | -0.9 <del>9</del> | 6,70    | 3       | <del>6</del> 57- | 0.05   | 10             | 0.10         | 0.0     | 0.00   | 10.0  |
|              |                                                  |                                                                      | -                                    | erval<br>Vertical Depth (N) E    |                                                               | 36.06                                     |                             | 3 Point                 | Applied Head<br>(feet of water)  |                 |                   | 19.01      | 10.61   | 19.01   | 10.61              | 00.61         | 19.00                                                                                                           | 00.61              |         | 19,04   | 21.22        | 26.02   | 30.45<br>04 ct | 30.75   | 29.06          | 27.63             | 27.15   | 90.92   | 11.12            | 12.61  | 19.19          | 19.17        | 19.13   | 19.14  | 19.14 |
| and the set  |                                                  | traddie packer<br>wabole                                             | th calculation:                      | Top of interval<br>Vertical      | 30.00 Above<br>40.00 Below                                    | Vertical depth of top of interval (fi)    |                             |                         |                                  |                 |                   | -<br>-<br> |         |         |                    |               | a contraction of the second | r i -<br>cile<br>C |         |         |              |         |                |         |                |                   |         |         |                  |        |                | -            |         |        | -     |
|              |                                                  | Test Type:<br>Coastant head, Sunddle packer<br>Gauge located dewhole | True vertical depth calculation:     | liale depth (A)                  | Above<br>Below                                                | Vertical depth of                         |                             |                         | Q<br>(gal/min)                   | • :<br>:        |                   |            |         |         |                    |               |                                                                                                                 |                    |         |         |              |         |                |         |                |                   |         |         |                  |        |                |              |         |        |       |
|              |                                                  |                                                                      |                                      |                                  |                                                               |                                           |                             |                         | Applied Head<br>(feet of water)  | 50 EI           | 19.02             |            | 19.01   |         |                    |               | 00.61                                                                                                           |                    |         |         | 19.24        |         |                |         |                | 27.67             |         |         |                  |        |                |              |         | 11.21  |       |
| -            |                                                  |                                                                      | inches                               | feet<br>feet below top of casing | feet<br>feet<br>feet below top of casing                      | feet below top of caring                  |                             |                         | Measured Head<br>(feet of water) | 70 CT           | 0.0               | -0.05      | 6 G     | 0.03    | \$0.0 <del>.</del> | <b>29</b> .00 | 60.05<br>20.05                                                                                                  | 90.04              | -0.07   | 10.01   | 0.18<br>6 11 | 7E.M    | 19.61          | 12.45   | 9.14           | 1.16              | 11      | 0.11    | 0.13             | +I-0   | 0.17           | 0.07         | 0.07    | 0.06   |       |
|              | rle/CSSA                                         |                                                                      |                                      |                                  |                                                               | 169.60                                    |                             |                         | Elapsed time<br>(minutes)        | 0,000           | 0.060             | 0.120      | 005.0   | 0,360   | 0.420              | 045.0         | 0.720                                                                                                           | 0.780              | 0.900   | 0.960   | 1,140        | 1.680   | 2.640          | 2.760   | 3 240          | 000.0             | 3.360   | 096.6   | 4.080            | 0+1.4  | 007.4          | 4.260        | 1.320   | 4.320  |       |
|              | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691 | 251<br>12<br>17-Nov-95                                               |                                      | Top<br>Bettem                    |                                                               |                                           |                             | 9.07:14                 | Elapsed time<br>(hours)          | 00.0            | 00.0              | 000        | 0.01    | 0.01    | 10:0               | 10:0          | 10.0                                                                                                            | 10.0               | 0.02    | 70'0    | 0.02         | 0.03    | 100            | 0.05    | 0.05           | 90.0              | 90.0    | 0.06    | 0.07             | 0.0    | 0.07           | 0.07         | 0.07    | 0.07   |       |
| Anti         | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date                                 | Borchole diameter<br>Borchole radius | Test section location            | Length of test interval<br>Gauge Depth<br>Statis Wester I and | JIAUC WALCT LEVE                          | General Lithology<br>Basali | Start Time              | Clock<br>Time                    | 91:10:6         | 9.07.18<br>1076-0 | 17/04      | 9.07.32 | 9.07.36 | 9.07.46            | 9.07.90       | 9.07:57                                                                                                         | 9.08.01            | 20:20:6 | 9,08,19 | 9.08:22      | 9.04.35 | 9.09:52        | 9:10:07 | 9.10:28        | \$10:32           | 9:10.36 | 9:10:36 | 61:11:6          | 211.26 | 9:11:26        | 9:11:30      | EC.11.V | 6011.9 |       |

251012A CHA, ligut Data

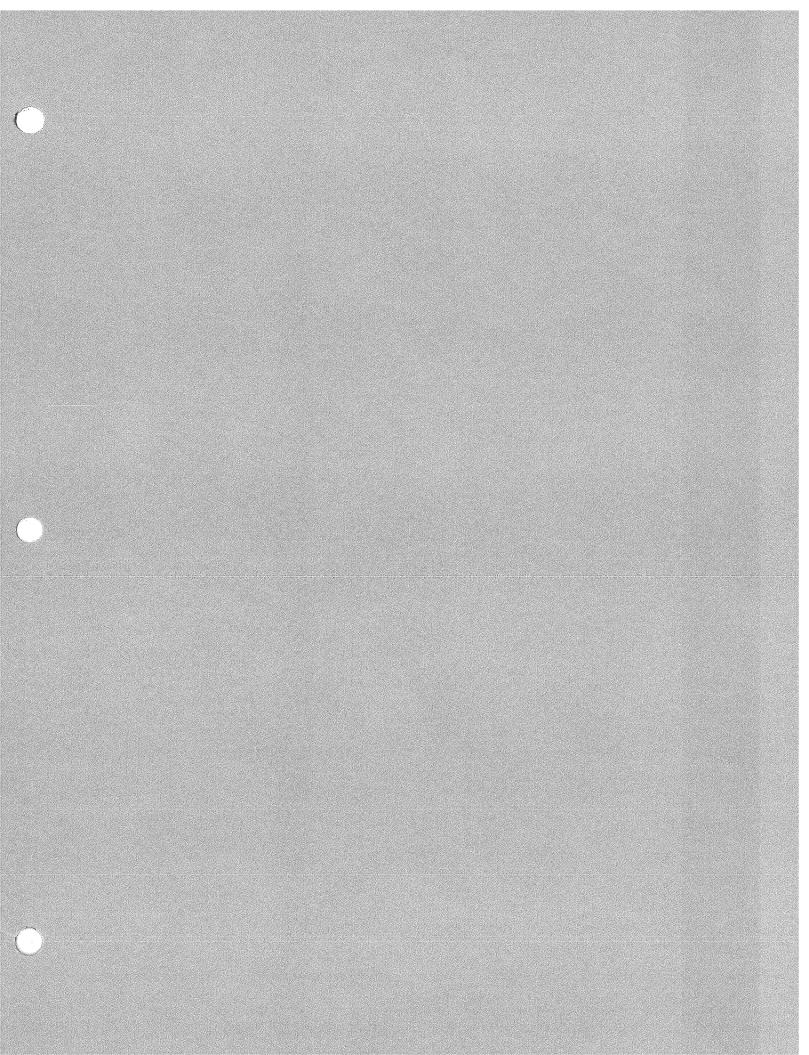
**Goldor Associatos** 

| Plot data used in a | analysis    |
|---------------------|-------------|
| Applied Head Fl     | ow Rate (Q) |
| (feet of water)     | (gal/min)   |
| 38.00               | 0.017       |
| 52.00               | 0.021       |
| 79.00               | 0.060       |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

| Borehole        | 251 |
|-----------------|-----|
| Interval Number | 12  |


Plot data

| Applied Head    | Flow Rate (Q) | F |
|-----------------|---------------|---|
| (feet of water) | (gal/min)     |   |
| 38.00           | 0.017         |   |
| 52.00           | 0.021         |   |
| 79.00           | 0.060         |   |

low Rate (Q) (ft<sup>3</sup>/min) 0.0023 0.0028 0.0080



K = hydraulic conductivity (feet/min) Q = Flow rate(ft<sup>3</sup>/min)  $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$  $h_e = Excess head$ (feet) L = length of interval tested (feet) he = Applied head (feet) Range of hydraulic conductivity K = 1.1E-06 cm/s Q = 0.003 ft<sup>3</sup>/min 2.3E-06 feet/min h. = 38.00 feet K = 2.0E-06 cm/s Q == 0.010 ft³/min 4.0E-06 feet/min h. = 79.00 feet K = 2.5E-06 cm/s Trendline Slope 6344.00 5.0E-06 feet/min



Packer Testing Results Borehole MF 252

C

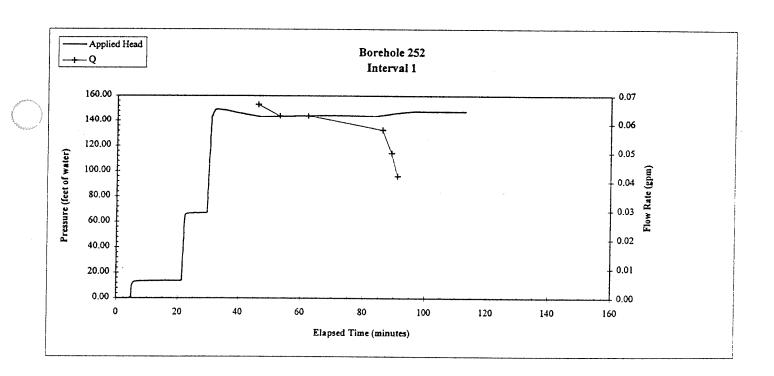
(-

| Interval # |                     | Interva                  | Interval Depth                                             | - A data matrix (A tanàné yangkanan nananananan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithology        |          |          | Hydraulic Conductivity           | Conductiv | ity      |            |
|------------|---------------------|--------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------------------------------|-----------|----------|------------|
|            | Ŭ.                  | Top                      | Bot                                                        | Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |          | feet/min |                                  |           | cm/sec   |            |
|            | (fbtc) <sup>1</sup> | (elevation) <sup>2</sup> | (fbtc)                                                     | (elevation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Low      | High     | Low High Regression <sup>3</sup> | Low       | High     | Regression |
|            |                     |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |          |          |                                  |           |          | 2          |
| 12         | 19.58               | 6054.58                  | 44.94                                                      | 6029.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Basalt           | 9.37E-06 | 1.14E-05 | 1.19E-05                         | 4.76E-06  | 5.78E-06 | 6.06E-06   |
| 11         | 44.58               | 6029.58                  | 69.94                                                      | 6004.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Basalt           | 1.57E-04 | 2.18E-04 | 3.12E-04                         | 7.98E-05  | 1.11E-04 | 1.58E-04   |
| 10         | 69.86               | 6004.30                  | 95.44                                                      | 5978.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone/Basalt | 1.46E-03 | 1.52E-03 | 1.64E-03                         | 7.43E-04  | 7.71E-04 | 8.35E-04   |
| 6          | 95.36               | 5978.80                  | 120.94                                                     | 5953.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 1.85E-04 | 5.45E-04 | 8.28E-04                         | 9.40E-05  | 2.77E-04 | 4.21E-04   |
| 8          | 120.86              | 5953.30                  | 146.44                                                     | 5927.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 4.88E-04 | 9.31E-04 | 1.37E-03                         | 2.48E-04  | 4.73E-04 | 6.94E-04   |
| 7          | 146.36              | 5927.80                  | 171.94                                                     | 5902.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 4.63E-05 | 1.13E-03 | 2.17E-03                         | 2.35E-05  | 5.76E-04 | 1.10E-03   |
| 6          | 171.86              | 5902.30                  | 197.44                                                     | 5876.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 8.60E-05 | 5.04E-04 | 7.83E-04                         | 4.37E-05  | 2.56E-04 | 3.98E-04   |
| 5          | 197.36              | 5876.80                  | 222.94                                                     | 5851.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 3.16E-05 | 8.97E-05 | 1.56E-04                         | 1.60E-05  | 4.56E-05 | 7.91E-05   |
| 4          | 222.86              | 5851.30                  | 248.44                                                     | 5825.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 6.77E-06 | 4.47E-06 | 2.32E-06                         | 3.44E-06  | 2.27E-06 | 1.186-06   |
| 3          | 248.36              | 5825.80                  | 273.94                                                     | 5800.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 1.95E-05 |          |                                  | 9.90E-06  |          |            |
| 2          | 273.86              | 5800.30                  | 299.44                                                     | 5774.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 6.57E-07 | 1.24E-06 | 8.83E-06                         | 3.34E-07  | 6.28E-07 | 4.49E-06   |
|            | 299.46              | 5774.70                  | 325.04                                                     | 5749.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sandstone        | 1.45E-06 |          |                                  | 7.36E-07  |          |            |
|            |                     |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |          |          |                                  |           |          |            |
|            |                     |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |          |          |                                  |           |          |            |
|            |                     |                          | All and the same spink when the same set of a statement of | and a second and a second and a second as a se |                  |          |          |                                  |           |          |            |
|            |                     |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |          |          |                                  |           |          |            |

<sup>1</sup> Feet below top of casing.

<sup>2</sup> Feet above mean sea level
 <sup>3</sup> Regression analysis does not include origin as a point.
 <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.

PACSUM.XLS

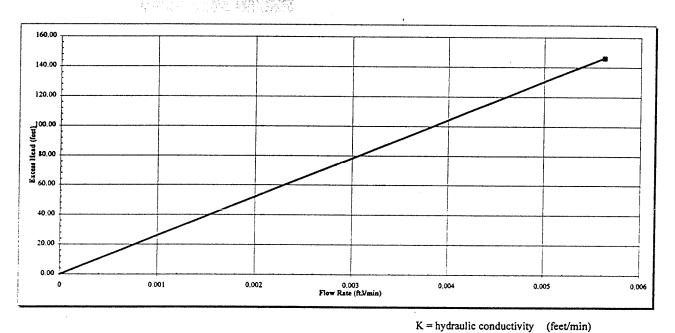

| 061.1872-614                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | Average Q<br>(gaVmin)            |                                      | 0,00<br>0,00       | 0.0                | 0000              | 0.0                | 0.00<br>0.00 | 0:00               | 800     | 0.00      | 0000    | 0.0         | 0.00              | 00.0    | 0.0     | 0.00    | 00.0    | 0.00    | 0.00    | 0.00    | 0.0       |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------------------------|--------------------|--------------------|-------------------|--------------------|--------------|--------------------|---------|-----------|---------|-------------|-------------------|---------|---------|---------|---------|---------|---------|---------|-----------|
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8<br>5 Point Moving Averages                         | ∆ time Av<br>(minutes) (s        |                                      | 000                | 00.0<br>00.0       | 10.0              | -0.0 <del>.</del>  | 10.0         | 8.6                | 800     | 0.00      | 000     | 0.00        | 000               | 000     | 0.0     | 0 00    | 10.0    | 00.00   | 00.00   | [0.0    | 10.0      |
|                                                | (1) diq<br>34.655<br>32.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Point M                                            | Applied Head<br>(feet of water)  |                                      | 10'0               | 0.02<br>0.01       | 10.0<br>10.0      | 10.0               | 00.0<br>00.0 | 00.0               | 000     | 0.00      | 10.0    | 10.0        | 10'0              | 0010    | 0.00    | 0.00    | 0.00    | 0.0     | 0.00    | 10:0    | 10.0      |
|                                                | eulations:<br>Bottom of interval<br>130.00 Above 3<br>311.40 Bebow 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6 I I I C I A I</b> (11)                          | Average Q<br>(gal/min)           | 8.                                   | 0.00               | 00.0               | 00.0              | 0.0                | 0.00         | 0.0                | 0.00    | 0.0       | 0.0     | 0.00        | 0.00              | 00.0    | 0.00    | 0.00    | 0.0     | 8.0     | 0.0     | 0.0     | 000       |
|                                                | True vertical depth calculation:<br>Bottom of inter<br>Bottom of inter<br>Above 330.00 Above<br>Below 331.40 Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 Point Moving Averages                              | Δ time A                         |                                      | 00.0<br>10.0       | 0.0                | 0.0<br>20.0       | 0.00<br>0.01       | 8            | 00.0<br>00.0       | 0.00    | 9 90<br>9 | 0.01    | 0.00        | 50:07<br>90 0     | 00'0    | 0,00    | 0.00    | 0.00    | 10:0    |         | 10.0    | 10.0      |
|                                                | al Depth (ft)<br>1964<br>2964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Poli                                                 | Applied Head<br>(feet of water)  | 10:0                                 | 10 0               | 10.0               | 0.01              | 10.0               | 000          | 0070               | 00.0    | 00.0      | 10'0    | 10.0        | 10 <sup>0</sup> 0 | 0.00    | 0.00    | 8.0     | 00.0    | 100     | 10.0    | 10:0    | 0.02      |
| $\left(\begin{array}{c} \\ \end{array}\right)$ | Test Type:<br>Constant head, Straddle packer<br>Gauge located downholo<br>True vertical depth calculation:<br>True vertical depth calculation:<br>Hole depth (f) 290.00 Above<br>Below 300.00 Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Q<br>(gaVmin)                    |                                      |                    |                    |                   |                    |              |                    |         |           |         |             |                   |         |         |         |         |         |         |         |           |
|                                                | A POCH ASE >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | Applied Head<br>(feet of water)  | 8 8 8 8<br>8 8 8 8<br>8 8 8          |                    |                    |                   |                    | 0.0          |                    | 80      |           |         | 0.0<br>10 0 |                   | 0.00    | 10:0    | 00.0    | 00.0    | 10.0    | 0.00    | 0.00    | £0.0      |
|                                                | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | Measured Head<br>(feet of water) | 00 0<br>00 0<br>00 0                 | 00.0               | 00.0               | 000               | 00.0               | 0:00         | 0.00               | 0000    | 0.00      | 00:0    | 10.0        | 00 0              | 0000    | 10.0    | 0.0     | 0,00    | 10.0    | 00.0    | 00.00   | 0.03      |
|                                                | 9 <b>7</b> _ 0 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | Elapsed time<br>(minutes)        | 0.00<br>0.06<br>0.12<br>0.13         | 0C.0<br>9C.0       | 0.42<br>0.54       | 09:00<br>CF 0     | 0.78               | 0.84<br>0.95 | 1.02               | 1 22    | 1.26      | 101     | 8           | 1.62              | 1.61    | 3       | 191     | 2.04    | 2.10    | 111     | 2.28    | 2.58      |
|                                                | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>943-27691<br>252<br>1<br>4-Nov-95<br>8-Nov-95<br>1<br>1<br>8-Nov-95<br>1<br>3-78<br>0-16<br>0-16<br>0-16<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>1-255<br>1<br>2-25<br>1<br>2-25<br>1<br>2-25<br>1<br>2-25<br>2-25 | 9:04:01                                              | Elapsed time<br>(hours)          | 90 90 90<br>90 90 90<br>90 90 90     | 10.0<br>0.01       | 10.0               | 10:0              | 10.0               | 0.02         | 0.02               | 20.0    | 0.02      | 0.02    | 10.0        | 0.03              | 0.01    | E0.0    | 0.03    | (0.0    | 0.04    | 0.04    | 10.0    | *         |
| Jijaoxe                                        | Client<br>Site<br>Froject No.<br>Borchole<br>Test Number<br>Test Date<br>Borchole diameter<br>Borchole radiu<br>Test ecutoa location<br>Length of test laterval<br>Gauge Depth<br>Static Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General Lithology<br>Siluton/Clayatone<br>Start Time | Clock<br>Time                    | 9.04.0<br>9.04.0<br>9.04.0<br>9.04.0 | 9.04.19<br>9.04.23 | 9.04.26<br>9.04.33 | 9.04.37<br>9.0434 | 9.04.48<br>6.04.48 | 10 MU        | 9.05.02<br>9.05.04 | £1.20.4 | 9.05.17   | 9.05.27 | 5.05.35     | 9.05:38           | 44°C0'A | 9.05.53 | 9,06:00 | ¥.06.03 | 9.06.07 | 9.06:14 | 9.06.18 | DC, 90, Y |

Gulder Associates

## 25201 CHA, Input Data

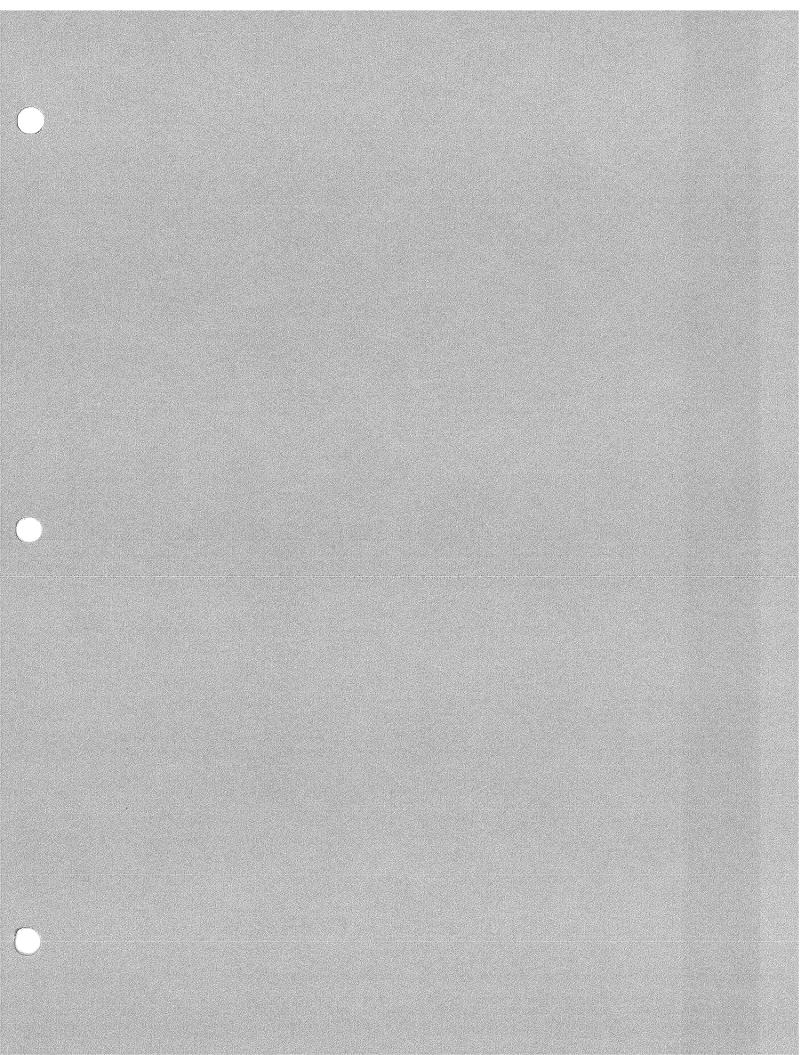
Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)146.000.042

1




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole252Interval Number1

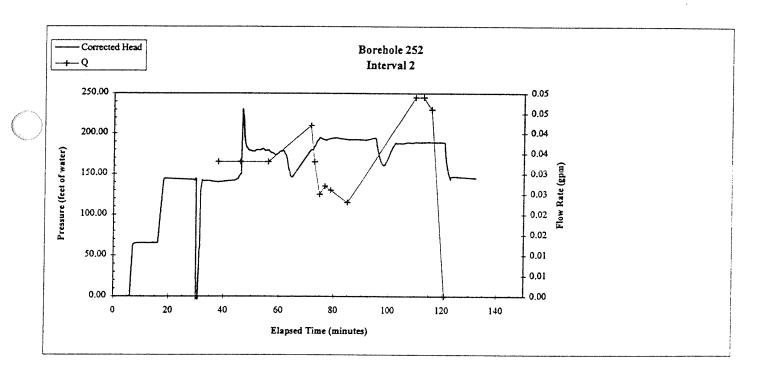

# Plot data

| Applied Head                                                                                                                                                                                                                        | Flow Rate (Q) | Flow Rate (Q)          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|
| (feet of water)                                                                                                                                                                                                                     | (gal/min)     | (ft <sup>3</sup> /min) |
| 146.00                                                                                                                                                                                                                              | 0.042         | 0.0056                 |
|                                                                                                                                                                                                                                     |               |                        |
| e de la composición d<br>Porte de la composición de la composició |               |                        |
|                                                                                                                                                                                                                                     |               |                        |
| 지수는 것을 위해 가지 않는                                                                                                                                                                                                                     |               |                        |



 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$  $Q = Flow rate<math>(ft^3/min)$ he = Applied head(feet)<math>L = length of interval tested(feet)<math>r = borehole radius(feet)Range of hydraulic conductivity

| K = | 7.4E-07 cm/s     | Q =              | 0.007  | ft³/min |
|-----|------------------|------------------|--------|---------|
|     | 1.5E-06 feet/min | h <sub>e</sub> = | 146.00 | feet    |



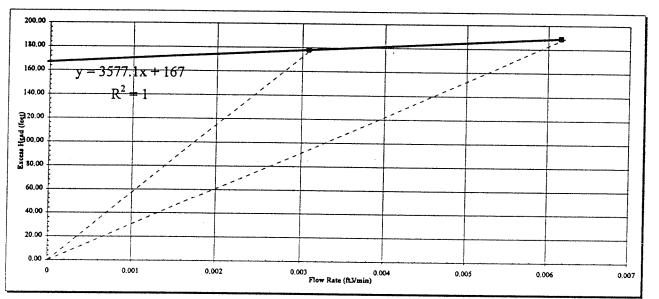

| 061,1875-634                                     |                                                              |                                                                           |                                                                                                                      |                                                              | Average ()<br>(sal/min)           |                      |                      | 8.0                  | 00.0         | 00 00<br>00 00 | 00 0<br>00 0         | 0.0          | 0.00         | 00.0         | 0000                 | 800         | 0.00             | 000        | 0.00                       | 000           | 000      | 0.00     | 0.00     | 000                  | 8.0         |
|--------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|----------------------|----------------------|----------------------|--------------|----------------|----------------------|--------------|--------------|--------------|----------------------|-------------|------------------|------------|----------------------------|---------------|----------|----------|----------|----------------------|-------------|
| $\left( \begin{array}{c} \\ \end{array} \right)$ |                                                              |                                                                           |                                                                                                                      | 27<br>5 Point Moving Averages                                | ∆time A<br>(minutes)              |                      |                      | 00.0                 | 3 3          | 900<br>00      | 00<br>00<br>00       | 800          | 000          | 0,00<br>0,00 | 00.0                 | 0.00        | 8.0              | 800        | 0.00                       | 8 9           | 0.00     | 0.00     | 0.00     | 000                  | 8.0         |
|                                                  |                                                              |                                                                           | cpth (N)<br>289.24<br>299.23                                                                                         | <sup>299.27</sup><br>5 Point Mo                              | Corrected Head<br>(feet of water) |                      |                      | 8 8                  | 9            | 8 9 9          | 00.0                 | 8.0          | 0.00         | 0.00<br>00.0 | 00.0                 | 0000        | <b>0</b> 0.0     | 0.0        | 00:0                       | 8 8 8         | 00.00    | 000      | 08.0     | 00.0                 | 90.0        |
|                                                  |                                                              | calculation:                                                              | Bottom of laterval<br>Vertical Depth (1)<br>290.00 Above 21<br>300.00 Below 23                                       | verues appla of bottom of Interval (1)<br>if Moving Averages | Average Q<br>(gaVmin)             |                      | 0.00                 | 0000                 | 00.0         | 99.0           | 00.0                 | 0.00         | 0.00         | 00.00        | 0.00                 | 0.00        | 0.00             | 0.00       | 0.00                       | 0.0           | 00'0     | 0.00     | 0.00     | 0.00                 | 0.00        |
|                                                  |                                                              | Tree vertical depth calculation:                                          | Hole depth (f)<br>Above<br>Beior                                                                                     | Point Moving Averages                                        | Δ time<br>(zsins)                 |                      | 6,00                 | 8 8                  | 0.0          | 88             |                      | 00'0<br>20'0 | 00.0         | 8            | 9 9<br>9             | 0.0         | 8.9              | 0.0        | 00.0<br>00                 | 8 8           | 0.0      | 8.5      | 8 8      | 0.0                  | 0.00        |
|                                                  |                                                              | F                                                                         |                                                                                                                      | 3 Point                                                      | Corrected Hea<br>(feet of water)  |                      | 00.0                 | 00<br>00<br>00<br>00 | 00.0         | 000            |                      | 0.0          | 0.0          | 0.0          | 0.00<br>0.00         | 03.0        | 8 8              | 0.00       | 00<br>00<br>00<br>00<br>00 | 000           | 0.00     | 0.0      | 90 G     | 90.0                 | 0.0         |
| Ó                                                | Tert Type:<br>Constant band. Straddia mediar                 | Gauge locatod downhole<br>True vertical depth calculation:<br>Transfirmed | 270.00                                                                                                               |                                                              | -                                 |                      |                      |                      |              |                |                      |              |              |              |                      |             |                  |            |                            |               |          |          |          |                      |             |
|                                                  | Teil Type:<br>Contait bead                                   | Gauge located downhole<br>True vertical depth calculati<br>True of La     | Hole deptb (ft)<br>Above<br>Below<br>Vertical dentb                                                                  |                                                              | Q<br>(gal/min)                    |                      |                      |                      |              |                |                      |              |              |              |                      |             |                  |            |                            |               |          |          |          |                      |             |
|                                                  |                                                              |                                                                           |                                                                                                                      |                                                              | orrected Hen<br>(feet of water)   | 00.0                 | 8 8 8                | 00.0                 | 00.0<br>00.0 | 00.0<br>00.0   | 00.00                | 00.0         | 00.0<br>00.0 | 00.0         | 00.0                 | 8.0         | 000              | 00 D       | 0000                       | 000           | 00.0     | 90 G     | 00.0     | 0.00                 | 000         |
|                                                  |                                                              | inch <b>cs</b><br>Foot                                                    | fest below top of casing<br>fest below top of casing<br>fest<br>fest below top of casing<br>fest below top of casing |                                                              | Measured Head<br>(feet of water)  | 00.00<br>00.00       | 90 G                 | 0,00                 | 00.0         | 0.00           | 0000                 | 0.0          | 0.00         | 0.00         | 0.00                 | 00.0        | 0.00             | 0.00       | 0.00                       | 0.00          | 800      | 0.00     | 0.00     | 0.00                 | 0.0         |
|                                                  | le/CSSA                                                      | 3.78<br>0.16                                                              | 273.86<br>299.44<br>25.58<br>146.60<br>163.88                                                                        |                                                              | Elansed time<br>(minutes)         | 000<br>9900<br>9900  | 0.12                 | 000                  | 0.42         | 0.54           | 0.72<br>0.78         | 0.84         | 0.96         | 1.14         | 1.26                 | R 41        | 8                | 191<br>191 | 1.80                       | 1.86          | 107      | 2.10     | 2.16     | 17                   | <b>6</b> 07 |
|                                                  | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691<br>252<br>2 | 6-Nov-95                                                                  | Top<br>Bottom                                                                                                        | 11:59:16                                                     | Elapsed time  <br>(hours)         | 00:0<br>00:0         | 00.0<br>00.0         | 10'0                 | 10.0         | 10:0           | 10.0                 | 10:0         | 0.02         | 0.02<br>0.02 | <b>10.0</b>          | 700<br>0.01 | 60 <sup>.0</sup> | 600<br>600 | 6.03                       | (0,0)<br>10 0 | 0.0      | 0.04     | 0.04     | 100                  | 5           |
| () Pronct                                        | Client<br>Site<br>Project No.<br>Borehole<br>Test Number     | Test Date<br>Borebole diameter<br>Borebole radius                         | Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level                                | General Lithology<br>Claycy Sandsone<br>Start Time           | Clock<br>Time                     | 11:59.16<br>11:59.20 | 11.39.23<br>11.39.27 | 45.95.11<br>#6.94.11 | 11.52.11     | 11.59.52       | 95,95,11<br>12,00,05 | 12.00.06     | 12 00:17     | 12.00.24     | 12.00.32<br>Annas ti | 12,00.42    | 12:00:50         | 12,00.57   | 10.10.21                   | 12.01.08      | 12 01:18 | 12:01:22 | 12:01:26 | 12.01.36<br>12.01:36 |             |

**Colder Associates** 

23202 (')1A, Input Data

| Plot data used  | in analysis   |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 178.00          | 0.023         |
| 189.00          | 0.046         |



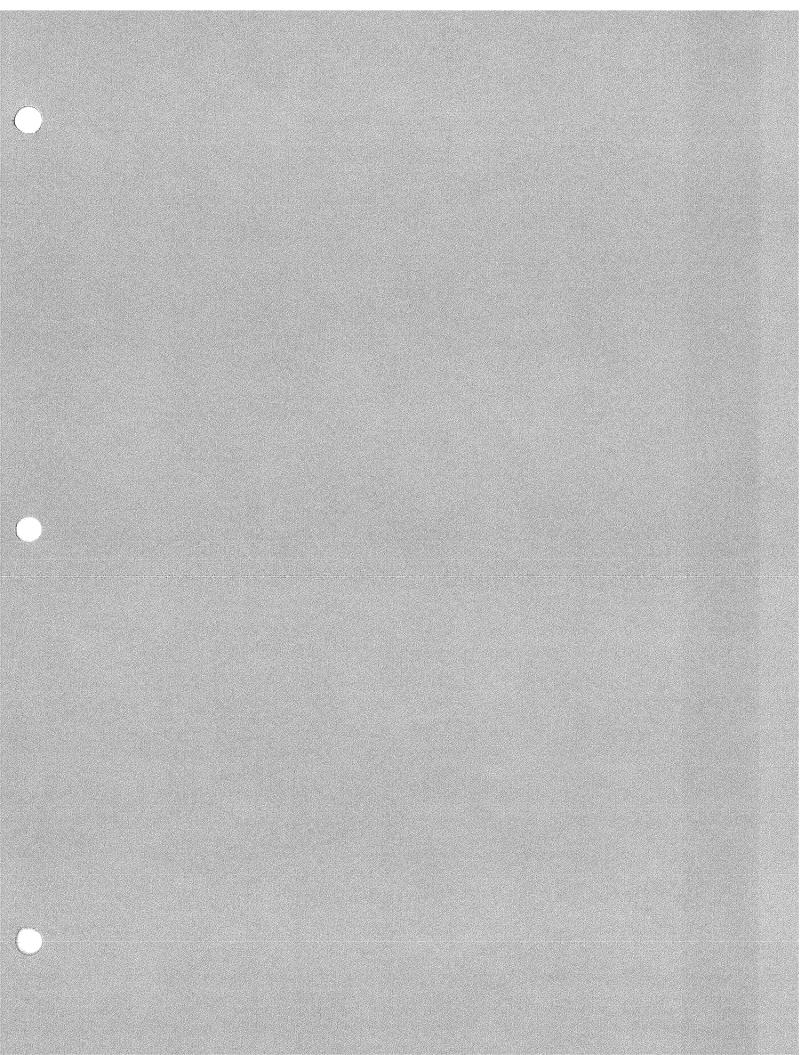

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole 252 Interval Number 2

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |  |
|-----------------|---------------|------------------------|--|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |  |
| 178.00          | 0.023         | 0.0031                 |  |
| 189.00          | 0.046         | 0.0062                 |  |





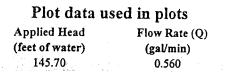

 $K = 1/(2\pi L) x (Q/h_e) x \ln (L/r)$ 

K = hydraulic conductivity(feet/min)Q = Flow rate $(ft^3/min)$ he = Applied head(feet)L = length of interval tested(feet)r = borehole radius(feet)

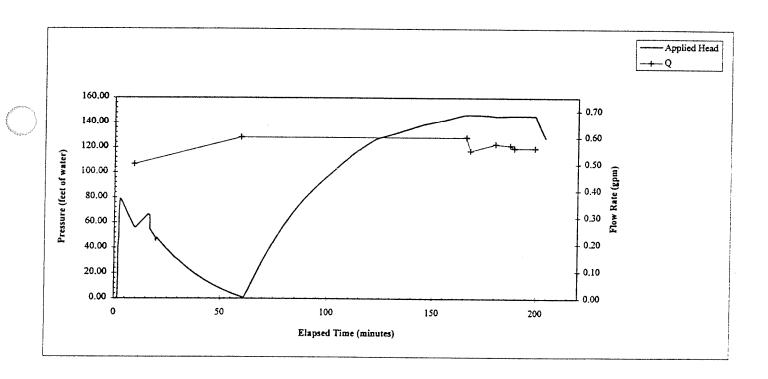
# Range of hydraulic conductivity

| K = | 3.3E-07 cm/s                            | Q =              | 0.004   | ft <sup>3</sup> /min |
|-----|-----------------------------------------|------------------|---------|----------------------|
|     | 6.6E-07 feet/min                        | h <sub>e</sub> = | 178.00  | feet                 |
| K = | 6.3E-07 cm/s                            | Q =              | 0.007   | ft <sup>3</sup> /min |
|     | 1.2E-06 feet/min                        | h <sub>e</sub> = | 189.00  | feet                 |
| K = | <b>4.5E-06 cm/s</b><br>8.9E-06 feet/min | Trendline Slope  | 3577.10 |                      |




|                                                                                       |                                                                                                                                                                                                     | a<br>Average ()                          | (gal/min)                                |                                  | 00.0         | 0.0           | 0.0                  | 8 8           | 80             | 0.00          | 8.0           | 000               | 0.00      | 0.00       | 0.00     | 80           | 0.0      | 0.0      | 0.00          | 0.00     | 0.00         | 0.0      | 0.00         | 00:0         | 000      | 00.0        | 0.00     |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------|--------------|---------------|----------------------|---------------|----------------|---------------|---------------|-------------------|-----------|------------|----------|--------------|----------|----------|---------------|----------|--------------|----------|--------------|--------------|----------|-------------|----------|
|                                                                                       |                                                                                                                                                                                                     | S Point Moving Averages<br>Head ∆ time   | (minutes)                                |                                  | 10.0         | 10.0-         | 10.0-                | 90 0<br>00 0  | 10.0           | 0.00          | 00.0<br>70 97 | -0.04             | 0.06      | 0 27       | 0110     | [9]          | 1.89     | 12.2     | 3.49          | 10.54    | 39.39        | 11.14    | 39.48        | 11.12        | 90.0r    | 14.52       | 10.01    |
|                                                                                       | epih (ft)<br>209 st<br>179 st<br>273.78                                                                                                                                                             | 5 Point M<br>Applied Head                | (feet of water)                          |                                  | <b>1</b> 0.0 | <b>10.04</b>  | 300                  | 5.7           | 0.04           | <b>1</b> 0.0  | 5 5 7         | -0.05             | 40°0+     | 0.02       | 0.17     | 0.76         | 121      | 1.76     | 1.57          | 4.75     | 12.73        | 78.15    | 11.46        | 10/14        | 19.45    | 10.00       | 8.0      |
|                                                                                       | True vertical depth calculation:<br>Bottom of facerval<br>Hole depth (11) Vertical Depth (11)<br>Above 370.00 Above 2<br>Below 310.00 Below 3<br>Vertical depth of bottom of laterval (11) 23       | ges<br>Average Q                         | (gal/min)                                | 8.9                              | 0.00         | 0.00          | 00 G                 | 000           | 0.0            | 00.0          | 000           | 00.00             | 0.00      | 0.00       | 000      | 0.00         | 0.00     | 00.00    | 0:00          | 0.00     | 0.00         | 00.0     | 800          |              | 8.0      |             | 0.00     |
|                                                                                       | True vertical depth calculation:<br>Bottom<br>Hole depth (ft) 270.00<br>Below 280.00<br>Vertical depth of bottom of late                                                                            | 3 Point Moving Averages<br>Head Δ time Λ | (suisa)                                  | 0.01                             | 0.03         | 0.00          | 10.0                 | 10.0          | 20             | 8 8           | 6.9           | 0.0               | -0.0J     | 90.00      | 12.0     | 1.02         | 0.89     | 0.87     | <b>1</b>      | 2.62     | 01.6<br>22.2 | 11.65    | 12.00        |              | 2.95     |             | 4.21     |
|                                                                                       |                                                                                                                                                                                                     | 3 Point  <br>Applied Head                | (feet of water)                          | 20.0 <del>.</del>                | -0.03        | <b>[</b> 0]0- | 10<br>10<br>10<br>10 | <b>10.04</b>  | 10.0-<br>20.0  |               | 0.0           | -0.0 <del>1</del> | -0.02<br> | () ()<br>Y |          | 0.76         | 1.22     | 1.69     | 111           | 16.6     | 0.01         | 22.00    | 12.15        | 15 05        | 68.66    | 1.11        |          |
| addle packer<br>whole                                                                 | True vertical depth calculation:<br>Top of laterval<br>Hole depth (I1) Vertical Depth (I1)<br>Above 24000 Above 239.9<br>Below 230.00 Below 239.82<br>Vertical depth of top of laterval (I1) 248.21 | <b>₹</b>                                 |                                          |                                  |              |               |                      | . 1           |                |               |               |                   | ţ.        |            | • ••     |              |          |          |               |          |              |          |              |              |          |             | - 1      |
| Test Type:<br>Comtant head, Straddlo packer<br>Gauge located downhole                 | True vertical depth calculation:<br>Tap of latery<br>V V V<br>Above 240,00 A<br>Bdow 250,00 B<br>Vertical depth of top of laterval                                                                  | ð                                        | (gal/min)                                |                                  |              |               |                      |               |                |               |               |                   |           |            |          |              |          |          | and a<br>Tari |          |              |          |              |              |          |             |          |
| 5 5 4                                                                                 | 2 8 9 E                                                                                                                                                                                             | Applied Head                             |                                          |                                  |              | 10.07         |                      |               | 6 0 0          |               |               | 10.04             |           |            |          |              | 8        |          |               | E        | 12.17        | 41.53    | 47,84        | 64.24        | 69.54    | 12.19       | 71.75    |
|                                                                                       | inchea<br>feet<br>feet below upp of caaing<br>feet below upp of caaing<br>feet below upp of caaing<br>feet below upp of caaing                                                                      | Measured Head                            | (ICCI OI MBIEL)                          | 800<br>500                       | <b>10</b> (9 | 10'0-         | -0.05                | <b>19</b> .07 | 10'0-<br>10'0- | <b>1</b> 0.0* | -0.0¢         | 10 10<br>10<br>10 | 0.0       | 0.00       | 0.25     | 57.0<br>27.1 | 1        | 11       | 1.02          | 4.77     | 11.11        | 41.53    | H1.H         | 64.24        | PS-69    | 72.19       | 21.67    |
| e/CSSA                                                                                | 3.78 ir<br>0.16 fr<br>248.36 fr<br>273.94 fr<br>25.58 fr<br>146.60 fr<br>163.88 fr                                                                                                                  | Elapsed time                             | (c:),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 90 10<br>90 10<br>11 10          | 0.0          | 97.0          | 0.42                 | 0.54          | 0.72           | 0.78          | <b>1</b>      | 1.02              | 1.44      | 1.44       | 1.50     | 8            | 1.62     | 1.68     | 1.74          | 1.80     | 1.86         | 1.98     | 11           | 1.11         | 2.34     | 2.40        | 2.46     |
| Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>252<br>3<br>6-Nov-95              | Top<br>Bottom                                                                                                                                                                                       | 15:00:50<br>Elapsed time 1<br>(hours)    |                                          | 3 8 8 9                          | 10:0         | 10.0          | 100                  | 10.0          | 10.0           | 0.01          | 10.0          | 0.02              | 0.02      | 0.02       | 600      | 10.0         | 0.03     | 0.03     | 0.03          | 0.03     | 0.03         | (0.0     | <b>1</b> 0.0 | <b>H</b> 0:0 | 10.0     | <b>6.04</b> | 0.04     |
| Client M<br>Site M<br>Project No. 94<br>Borchote 23<br>Test Number 3<br>Test Date 6.1 | Borehole diameter<br>Borehole radiuu<br>Test section location<br>Length of test laterval<br>Gauge Depth<br>Static Water Level<br>General Lithology<br>Studstone/Claystone                           | Start Time<br>Clock E<br>Time            | 2                                        | 15.00.57<br>15.00.57<br>15.00.57 | 15.01.08     | 15 01.12      | 13:01.15             | 07:10.51      | EC:10:51       | 15:01:37      | 15.01.48      | 15.01.51          | 15.02:16  | 13.02:16   | 15:02:20 | 15.02.27     | 12:07:51 | 15.02.31 | 15.02.34      | 15.02:38 | 15:02:42     | 15.02.49 | [0.[0.5]     | 13.01.03     | 01:00:01 | 1 20 21     | 11:03:14 |

Goldor Associatos


23203 CHA, liqui Data

0111612-116

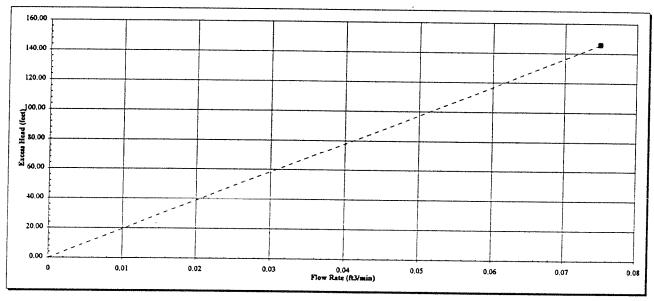
Juner!



٠



(


| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole252Interval Number3

# Plot data

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 145.70          | 0.560         |
|                 |               |

Flow Rate (Q) (ft<sup>3</sup>/min) 0.0749



 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

# Range of hydraulic conductivity

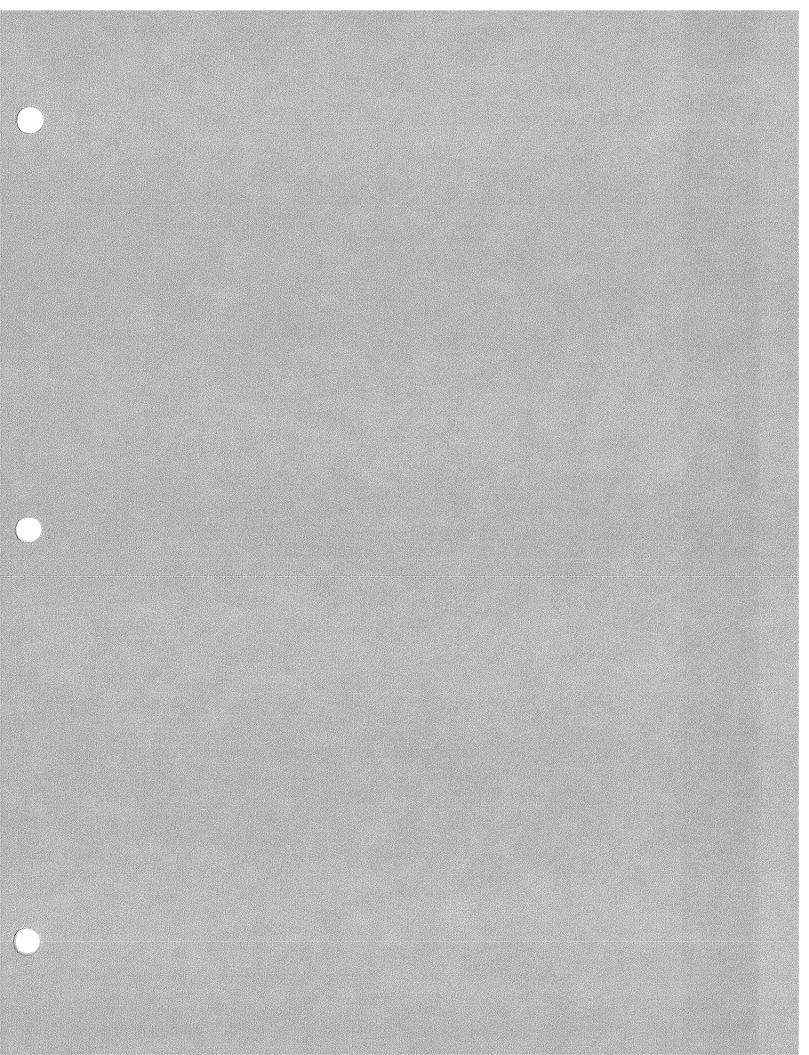
| K = | 9.9E-06 cm/s     | Q =              | 0.090  | ft³/min |
|-----|------------------|------------------|--------|---------|
|     | 2.0E-05 feet/min | h <sub>e</sub> = | 145.70 | feet    |

K = hydraulic conductivity

L = length of interval tested (feet)

Q = Flow rate

he = Applied head

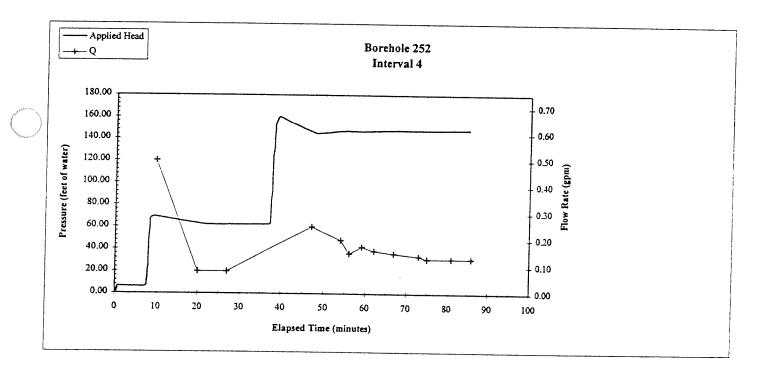

r = borehole radius

(feet/min)

(ft<sup>3</sup>/min)

(feet)

(feet)



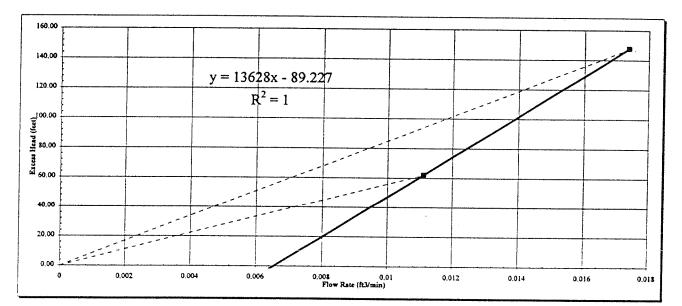

| 0(1,1972- <b>(1</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                          |                                      |                                                      |                                        |                                           |                                | 77                      | Average Q                        | (nimus) |         |              | 00.00     | 0.00               | 0.00               | 8 8              | 0.00                                                                                                                                                                                                                                | 0.00         | 000          | 0.0          | 0.00         | 00'0               | 0.00    | 00,0        | 0.00         | 0.00         | <b>0</b> 0.0 | 800           | 00.00        | 0:00         | 0.00         | 0.00       | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------|-------------------------|----------------------------------|---------|---------|--------------|-----------|--------------------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------------|---------|-------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                                          |                                      |                                                      |                                        |                                           |                                | 5 Point Moving Averages | ∆ time                           | (mmmcs) |         |              | 121       | H Z                | 741                | 1<br>1<br>1<br>1 | 3.86                                                                                                                                                                                                                                | 2.18         | 0.06         | 0.00         | <b>10</b> .0 | 8.9                | 10.0-   | -0.02       | 0.00         | 0.05         |              | 40.0          | -0.03        | 0.03         | 00.0         | 000        | 000     | (0.0-<br>00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                          |                                      | 'interval<br>Vertical Depth (N)                      | 219.86                                 | 246.29                                    |                                | 5 Point M               | Applied Head                     |         |         |              | 0.83      | 1.27               | 107<br>101         | 4.10             | 3.06                                                                                                                                                                                                                                | 5.83<br>6.77 | 634          | 6.35         | 6.15         | EC.0               | []      | 26.9        | 16.9         | 6.31<br>6.79 | 628          | 6.27          | 6.36         | 6.26         | 6.26         | 6.26       | 97 0    | 6 25<br>5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                          | h calculation:                       | 3                                                    | 240.00 Above<br>250.00 Below           | Vertical depth of bottom of interval (ft) |                                | 1843                    | Average Q<br>(gal/min)           |         |         | 0.00         | 0.00      | 00 0<br>0          | 80                 | 00.0             | 0.00                                                                                                                                                                                                                                | 0000         | 0.00         | 0,00         | 90 S         | 000                | 0.00    | 0.00        | 8.0          | 000          | 0.00         | 0.00          | 0.00         | 0.0          | 0.00         | 000<br>000 |         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                          | True vertical depth calculation:     | Hole depth (ft)                                      | Above<br>Below                         | ertical depth of l                        |                                | 3 Point Moving Averages | ∆ time<br>(mins)                 | Ì       |         | 0.46         | 92.0<br>0 |                    | 2.60               | 84.6             | 212                                                                                                                                                                                                                                 | 4rn<br>90.0  | 0.00         | 0.00         | 8.9          | 3                  | 0.02    | <b>0</b> .0 | 5.0          | 1010         | 4.9          | <b>[</b> 0'0- | 00.0         | 8 6          | 0.0          | 0.0        | 900     | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                          | H                                    | Depth (ft)                                           | 219.9<br>229.86                        | V (1.111                                  |                                | 3 Point                 | Applied Head<br>(feet of water)  |         |         | 0.46         | 0.76      | 12                 | 2.75               | 121              | 3)48<br>1 - 4                                                                                                                                                                                                                       | PC 9         | 6.35         | 6.35         |              | 16.9               | 6.32    | 6.32        | 6.32<br>6.11 | 679          | 6.28         | 6.27          | 613          | 6.23<br>24 2 | 97.9<br>91.9 | 97.9       | 6.25    | Ŗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gaugo located downhole – | True vertical depth calculation:     | Top of int                                           | 220.00 Above<br>230.00 Below           | Vertical depth of top of interval (ft)    |                                |                         |                                  |         |         |              |           |                    |                    |                  | a sector de la compacta de la compac<br>La compacta de la comp |              |              |              |              |                    |         |             |              |              |              |               |              |              |              |            |         | and the second s |
| "Altenia (k.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Test Type:<br>Constant In<br>Gaugo local                                 | True vertic                          | Hole depth (ft)                                      | Below                                  | Vertical de                               |                                |                         | d Q<br>r) (gal/min)              | · · ·   |         |              |           |                    |                    | 1944)<br>1944    |                                                                                                                                                                                                                                     |              |              |              |              |                    |         |             |              |              |              |               |              | •.           |              |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                          |                                      |                                                      |                                        |                                           |                                |                         | Applied Head<br>(feet of water)  | 0.21    | 0.29    | 90.0<br>25.0 | 1.15      | 1.58               | 2.49               | 4.16             | 6.30                                                                                                                                                                                                                                | 6.35         | 92.9         | 51.9<br>21.9 | 60.9         | 16.3               | 0(.9    | 6.9<br>11 8 | 6.30         | 6.30         | 6.29         | 6.26<br>6.25  | 6.16<br>6.16 | 623          | 6.28         | 6 2 3      | 6.23    | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                          | inches                               | feet below top of casing<br>feet below top of casing | foot<br>foot below ton of casine       | feet below tup of casing                  |                                |                         | Measured Head<br>(feet of water) | 0.21    | 0.29    | 8.0<br>ACO   | 511       | 1.58               | 2.49               | 4.18<br>5 97     | 00.9                                                                                                                                                                                                                                | 6.35         | 6.36<br>81.4 | 6.3          | 60.9         | 16.3               | 6.30    | 6.34        | 6.30         | 6.30         | 6.29         | 6.26<br>6.75  | 979<br>979   | 6.23         | 6.28         | 6.25       | £13     | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | te/CSSA                                          |                                                                          | 3.78                                 | <u>ن</u> ـ م                                         |                                        |                                           |                                |                         | Elapsed time<br>(minutes)        | 0.00    | 0.06    | 0.12         | 0(.0      | 0.36               | 0.42               | <b>1</b><br>0900 | 0.72                                                                                                                                                                                                                                | 0.78         | 3.0          | 201          | 1.14         | 8.1                | 971     | Ē           | 1.36         | 1.62         | 1.01         | 2.16<br>2.16  | 2.16         | 111          | 2.28         | 1.28       | 134     | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Morrison-Malerte/CSSA<br>Miner Flat<br>943-27691 | 252<br>4<br>7-Nev-95                                                     |                                      | T+p<br>Boltum                                        |                                        |                                           |                                | 7:49:04                 | Elapsed time<br>(hours)          | 0.00    | 00.0    | 00 00 00     | 10.0      | 10:0               | 10.0               | 10.0             | 10.0                                                                                                                                                                                                                                | 10.0         | 0.02         | 0.02         | 0.02         | 0.02               | 0.02    | 0.02        | 60.0         | 0.03         |              | 10.0          | 0.04         | 100          | N0:0         | 100        | 10.0    | <b>1</b> 0'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Average and a second se | ÷                                                | Borchole<br>Test Number<br>Test Date                                     | Borehole diameter<br>Borehole radius | Test section location                                | Length of test interval<br>Gauge Depth | Static Water Level                        | General Lithology<br>Sandstone | Start Time              | Clock<br>Time                    | 7.49.04 | 7:49:08 | 7:49:15      | 7:49:22   | 7:49:26<br>7-49-79 | 47.45.1<br>91.92.7 | 7.49.40          | 7,49.47                                                                                                                                                                                                                             | 7.49.51      | 7.50,02      | 7:50.05      | 7:50:12      | 01.02.1<br>01.02.1 | 12.02.1 | 7,50:30     | 15023        | 15021        | 7.51.10      | 7:51:14       | 7:51:14      | 713117       | 7:51:21      | 15121      | March 1 | 13128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

**Golder Associates** 

25204 CHA, liqui Dala

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)62.010.083147.650.130




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole 252 Interval Number

### Plot data

4

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 62.01           | 0.083         | 0.0111                 |
| 147.65          | 0.130         | 0.0174                 |



K = hydraulic conductivity

L = length of interval tested (feet)

Q = Flow rate

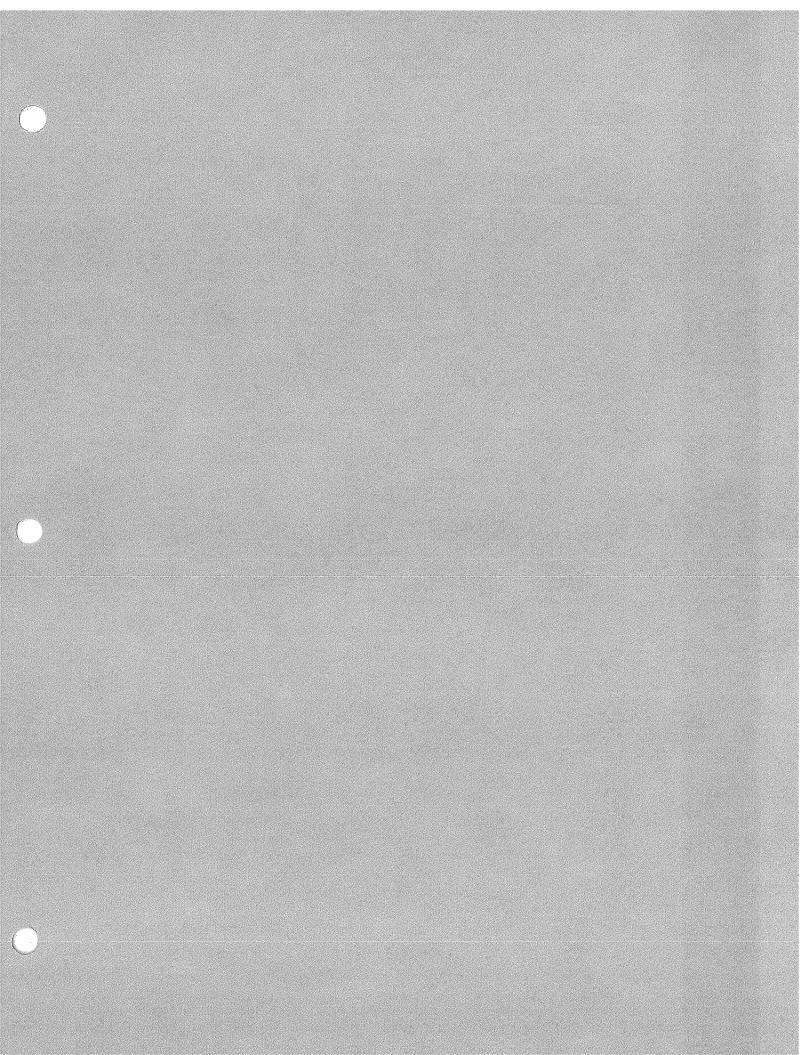
he = Applied head

r = borehole radius

(feet/min)

(ft<sup>3</sup>/min)

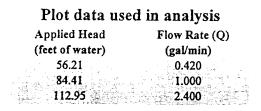
(feet)


(feet)

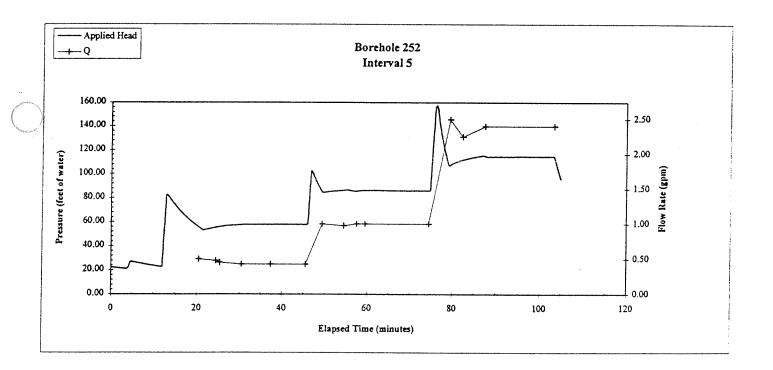
 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

# Range of hydraulic conductivity

| K = | 3.4E-06 cm/s     | Q =              | 0.013  | ft <sup>3</sup> /min |
|-----|------------------|------------------|--------|----------------------|
|     | 6.8E-06 feet/min | h <sub>e</sub> = | 62.01  | feet                 |
| K = | 2.3E-06 cm/s     | Q =              | 0.021  | ft <sup>3</sup> /min |
|     | 4.5E-06 feet/min | h <sub>e</sub> = | 147.65 | feet                 |


K = 1.2E-06 cm/s Trendline Slope 13628.00 2.3E-06 feet/min




| 061.1972-614                                     |                                                                                       |                                                                                                                             |                                                                               | Average Q<br>(gal/min)                | ?                             | 00.0                    | 0.00                 | <b>0</b> 0.0       | 0.00           | 0.00                | 00.0                   | 00.00                | 00.0<br>00.0   | 0.0            | 0.00           | 0.00               | 00.0         | <b>9</b> 0.0   | 00.0    | 00.00   | 0.00    | 00.0    |
|--------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-------------------------------|-------------------------|----------------------|--------------------|----------------|---------------------|------------------------|----------------------|----------------|----------------|----------------|--------------------|--------------|----------------|---------|---------|---------|---------|
| $\bigcirc$                                       |                                                                                       |                                                                                                                             | ll<br>S Point Maxima Aurona                                                   | orung Averages<br>A time<br>(minutes) |                               | -0-11                   | 01.0-                | 0.21<br>81.0-      | 11.0           | 11.9                | \$0.0<br>1 d           | 10.0                 | 21 Q<br>Q<br>Q | -0,17<br>-0,17 | 10             | -0-12<br>90.09     | 01.0-        | 98 9<br>97 9   | 0.15    | 11.0-   | 91.0    | 1.0     |
|                                                  |                                                                                       | liaterval<br>Vertical Depth (f)<br>Above 219.87<br>Below 229.86                                                             | 122.N<br>K Point M                                                            | Applied Head<br>(feet of water)       |                               | 11.13                   | 17.7<br>17.7         | 22.09<br>22.09     | 22.00          | 21.95               | 21.91<br>21.80         | 21.46                | 21.80          | 21.76          | 21.69          | 21.66              | 21.62        | 21.60<br>21.56 | 21.55   | 12.15   | 21.48   | 21.45   |
|                                                  |                                                                                       | 10                                                                                                                          | Vertical depth of bottom of laterval (ft)<br>at Moving Averages               | Average ()<br>(gal/min)               |                               | 93 0<br>03 0            | 80 00 00<br>00 00 00 | 90 00<br>00 00     | 0:00           | 0.00                | 0.00                   | 8.0                  | 90.0           | 0.00<br>00.0   | 0.00           | 0.0                | 0.00         | 90 O           | 0.00    | 000     | 0.0     | 00.0    |
|                                                  |                                                                                       | True vertical depth calculatioa:<br>Bottom<br>Hole depth (ft)<br>Above 220.00<br>Bolow 220.00                               | 4 Vertical depth of botta<br>3 Point Moving Averages                          | Δ time<br>(mins)                      |                               | 8 8 8<br>9 9 9          | 3 3 3                | 31 4               | 90.0           | 8.9                 | <b>29</b> .0-<br>78/0- | <b>1</b> 0,0<br>10,0 | 6.0            | 0.0            | -0.0K          | 5 X                | <b>19</b> .9 | 5 7            | -0.0¢   | 0.11    | 8 2     | 90.0    |
|                                                  |                                                                                       | a: T<br>Erval<br>Vertical Depth (ft) H<br>Above 199,9                                                                       | 197.24 V<br>3 Point                                                           | Applied Head<br>(feet of water)       |                               | 22 26<br>24 25<br>26 25 |                      | 22.09              | 21.94          | 16/17<br>16/17      | 21.91<br>21.86         | 21.86<br>21.64       | 21.61          | и.и<br>И.И     | 21.69          | 21.64              | 21.62        | 21.59          | 21.55   | 21.51   | 1.4     | 4       |
| $\left( \begin{array}{c} \\ \end{array} \right)$ | Teil Type:<br>Coastant head, Straddle packer<br>Gauge located døwabøle                | True vertical depth calculation:<br>Tep of interval<br>Hole depth (ft) Vertical<br>Above 190.00 Above<br>Below 200.00 Below | Vertical depth of top of laterval (ft)                                        | Q A (()                               |                               |                         |                      |                    |                |                     |                        |                      |                |                |                |                    |              |                |         |         |         |         |
|                                                  | Test Type:<br>Coastant k<br>Gauge loci                                                | True ve<br>Hole de<br>Above<br>Belau                                                                                        | Veruce                                                                        | Applied Head<br>(feet of water) (g    | 22.33                         |                         |                      |                    |                |                     |                        |                      |                |                | 21.67<br>21.67 |                    | 21.62        |                | 21.57   |         |         |         |
|                                                  |                                                                                       | inches<br>freat below top of <b>casing</b><br>freat below top of <b>casing</b><br>freat below top of <b>casing</b>          | feet below top of casing                                                      | Measured Head<br>(feet of water)      | 20.63<br>20.78                | 17.02<br>17.02          | 20.66<br>20.66       | 20.62<br>20 50     | 20.50<br>20.45 | 20.45               | 65.05                  | 20.34                | 0C.02<br>75.02 | 20.23          | 20.17<br>20.17 | 20.13              | 11.02        | 20.07          | 20.07   | 96:61   | 26.61   | 19.91   |
|                                                  | e/CSSA                                                                                | 3.78<br>0.16<br>197.36<br>222.94<br>166.50                                                                                  |                                                                               | Elapsed time<br>(minutes)             | 90 0<br>90 0                  | 0.0                     | 0.36<br>0.42         | 0.54               | 0.72           | M 0                 | 5                      | 1.20                 | 97.1<br>97.1   | 1.44           | 162            | 1.64               | 91           | 86.1           | 2.10    | 11      | 3.26    | 2.34    |
|                                                  | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691<br>252<br>5<br>7-Nov-95              | Top                                                                                                                         | 9:40:37                                                                       | Elapsed time<br>(hours)               | 00 0<br>00 0<br>00 0          | 00.0                    | 10.0                 | 10'0               | 10.0           | 0.01<br>0.02        | 0.02                   | 0.02                 | 0.02           | 0.02           | CO10           | 0.03               | 0.0          | 0.0<br>10.0    | 10.0    | M0.0    | 0.04    | 10 0    |
| 1130000                                          | Client M<br>Site M<br>Project No. 94<br>Borehole 25<br>Test Number 5<br>Test Date 7-1 | Borebole diameter<br>Borebole radius<br>Test section location<br>Length of test interval<br>Gauge Depth                     | Static Water Level<br>General Lithology<br>Standtione/Clayatone<br>Start Time | Clock F<br>Time                       | 9.40:37<br>9.40.41<br>9.40.44 | 9.40.48<br>9.40.55      | 9:40.59<br>9:41:02   | 9.41.09<br>9.41.13 | 92.11.24       | 75:14.4<br>\$6:14.8 | 9:41:38<br>9:41:42     | 57-17-5              | 9,42,00        | 11-CP-6        | 942.14         | 9:42:18<br>9:42:21 | 9.42.29      | 95:29:9        | EP:29:6 | 9,12,50 | 9:42.54 | 9:42:57 |

**Golder Associates** 

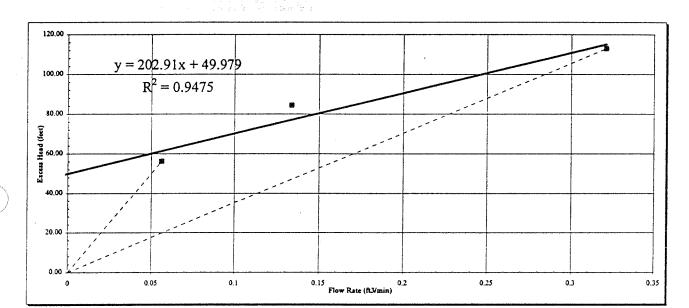
25205A CHA, hout Data



٠.



and the second s

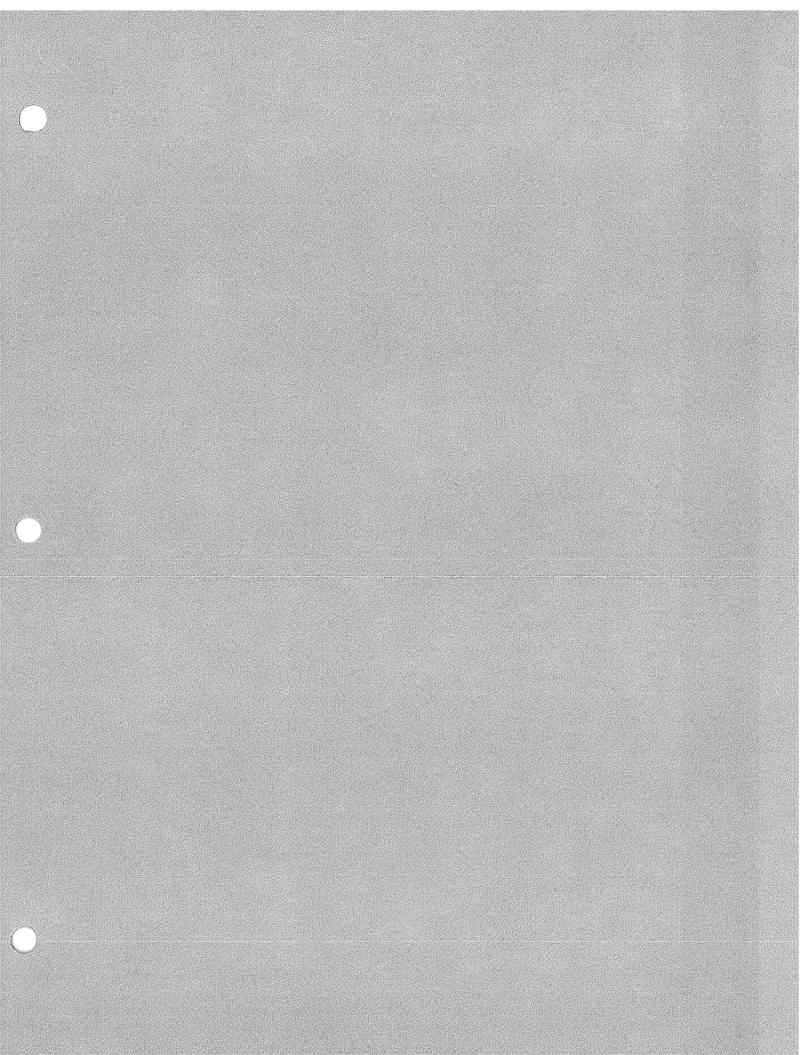

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole Interval Number

Plot data

252 5

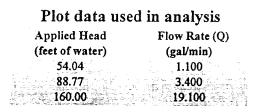
| Å | pplied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|---|----------------|---------------|------------------------|
| ( | feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
|   | 56.21          | 0.420         | 0.0562                 |
|   | 84.41          | 1,000         | 0.1337                 |
|   | 112.95         | 2.400         | 0.3209                 |
|   |                |               |                        |



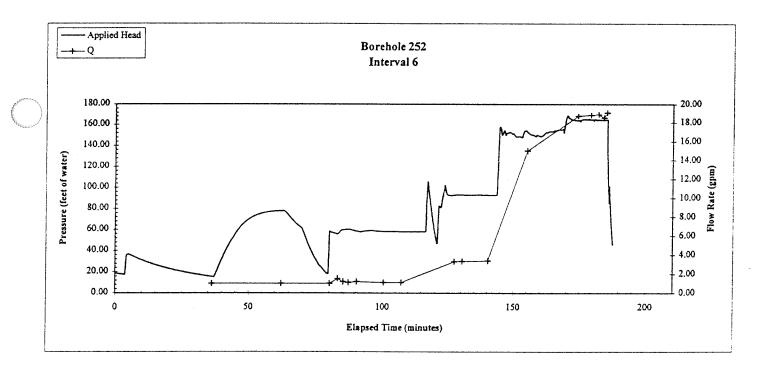

| K : | = 1 | /(2IIL) | ¥ | (ር/ኬ ) | ¥ | In  | (r/ n) |
|-----|-----|---------|---|--------|---|-----|--------|
| v.  |     | /(2110) | А | (QmD   | А | 111 | (Lai)  |

| ·          |                        | Q = Flow<br>he = App<br>L = lengt<br>r = boreh | lied head<br>h of inter | val tested           | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|------------------------|------------------------------------------------|-------------------------|----------------------|------------------------------------------------------|
| Range of I | hydraulic conductivity |                                                |                         |                      |                                                      |
| K =        | 1.6E-05 cm/s           | Q =                                            |                         | ft <sup>3</sup> /min |                                                      |
|            | 3.2E-05 feet/min       | h <sub>e</sub> =                               | 56.21                   | feet                 |                                                      |
| K =        | 4.6E-05 cm/s           | Q =                                            | 0.321                   | ft³/min              |                                                      |
|            | 9.0E-05 feet/min       | h <sub>e</sub> =                               | 112.95                  | feet                 |                                                      |
| K =        | 7.9E-05 cm/s           | Trendline Slope                                | 202.90                  |                      |                                                      |
|            | 1.6E-04 feet/min       |                                                |                         |                      |                                                      |

K = hydraulic conductivity (feet/min)


e. .




| 061.1972-614 |                                                  |                                                                        |                                      |                                                      |                              |                                                      |                                | Ĩ                       | Average ()              | (gal/min)            |          |                |          | 0.00           | 00.00          | 900<br>000                    | 00.0           | 0.00     | 00.0     | 00.0           | 0.00           | 8.0        | 00.0                                                                                                            | 0.00          | 00.0          | 0.0    | 8.0            | 000          | 0.00     | 0.00     | 0.00   | 000                  | 000            | 000         | 0.00   |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------|------------------------------------------------------|--------------------------------|-------------------------|-------------------------|----------------------|----------|----------------|----------|----------------|----------------|-------------------------------|----------------|----------|----------|----------------|----------------|------------|-----------------------------------------------------------------------------------------------------------------|---------------|---------------|--------|----------------|--------------|----------|----------|--------|----------------------|----------------|-------------|--------|
| $\bigcirc$   |                                                  |                                                                        |                                      |                                                      |                              |                                                      |                                | 5 Point Moving Averages | Δtime                   | (minutes)            |          |                |          | 11.0           | 91.0           | 0.21                          | -0.20          | 910      | 9 9<br>9 | -0.07          | 01.0           | 9 7        | 07.0-                                                                                                           | <b>81</b> .0- | -0.16         | 110    | 8 2            | 90.0         | -0.16    | -0.15    | -0.17  | 1. j                 |                | -0.16       | -0. It |
|              |                                                  |                                                                        |                                      | laterval<br>Vertical Depth (ft)                      | 149,49                       | 197.32                                               |                                | 5 Point M               | Applied Head            | (feet of water)      |          |                |          | 11,72<br>11,72 | 18.71          | 18,66                         | 18.61          | 11.57    | 8        | 18.46          | 18.45<br>54.51 | 11.39      | 80.81                                                                                                           | 00.31         | 18.36<br>2011 | 16.23  | 14.19          | 18.17        | 18.15    | 18.10    | 18.07  |                      | 12.97          | 17.94       | 15.61  |
|              |                                                  |                                                                        | th calculation:                      | Bottom of laterval<br>Vertical I                     | 190.00 Above<br>200.00 Above | Š                                                    |                                | 1863                    | Average Q               | (gal/min)            |          |                | 0.00     | 00.0           | 0.0            | 0.00                          | 0.00           | 0.00     | 0.00     | 0.00           | 0000           | 0.00       | 0.00                                                                                                            | 9.0           | 0.00          | 080    | 000            | 0.00         | 00.0     | 0.0      | 00'n   | 000                  | 0.0            | 00'0        | 000    |
|              |                                                  |                                                                        | True vertical depth calculation:     | Hole depth (ft)                                      | Above<br>Balove              | ertical depth of                                     |                                | 3 Point Moving Averages | Δ time                  | (anina)              |          |                | 19.4     | 8 X            | 0.10           | <del>1</del> 0.0 <del>1</del> | 6.13<br>11.0   |          | 10.0-    | 38. G          | 3 3            | 11.0-      | <b>9</b> 0.0                                                                                                    | \$8.0<br>0    | 11.0          | 000    | 0.01           | <b>1</b> 0.0 | -0.07    | 1.9      |        | 20.0                 | -0.0X          | 10.0-       | -0.10  |
|              |                                                  |                                                                        | ų                                    |                                                      | 6.691<br>9.671               | V 87.171                                             |                                | 3 Point                 | Applied Head            | (feet of water)      |          |                |          | 18.75          | 18.71          | 18.67                         | 18.61<br>12 57 | 11.5     | 11.50    | 18.48<br>11 12 | 9 E E          | 96.81      | 50.81                                                                                                           | 97 11         | 18.21         | 97 91  | 18.19          | 18.19        | 18,16    | 191      | 18.02  | 6671                 | 19.11          | 17.96       | 16'21  |
| $\bigcirc$   |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located dawnhole | True vertical depth calculation:     | Top of int                                           | 170.00 Above<br>180.00 Below | Vertical depth of top of laterval (ft)               |                                |                         |                         |                      |          |                |          |                |                |                               |                |          |          |                |                |            | and the second secon |               |               |        |                |              |          |          |        |                      |                |             |        |
|              |                                                  | Teil Type:<br>Constant b<br>Gauge loca                                 | True vert                            | Hole depth (f)                                       | Above<br>Below               | Vertical d                                           |                                |                         | lied Head               | (feet of water) (gal |          |                | 18.78    | -              |                | 90 8                          | 11.04<br>11.55 |          |          | 18.45          |                |            |                                                                                                                 |               |               |        |                | 1818         |          |          |        |                      |                | 19.71       |        |
|              |                                                  |                                                                        | inches                               | feet below top of casing<br>feet below top of casing | feet                         | feet below top of casing<br>feet below top of casing |                                |                         | Measured Head           | (Icct of water)      | 14.12    | 14.13<br>12.12 | 14.7H    | 14.76          | 14.72<br>22.22 | 14.00                         | 14.55          | 14.51    | 14.50    | 14.45          | 14.44          | 9 : :<br>: | 17 N                                                                                                            | 14.24         | 14.22         | 14.17  | 11.12<br>11.12 | 14.18        |          | 14.06    | 14.00  | 14.00                | 19.EI<br>19.EI | <b>5</b> 11 |        |
|              | 14/CSSA                                          |                                                                        | 3.78                                 |                                                      |                              | 166.50                                               |                                |                         | Elapsed time            | (connice)            | 00.0     | 0.06           | 0.18     | 0.24           | 0.36           | 0.54                          | 0.60           | 0.72     | 0.75     | 96.0           | 1.02           | •1'i       | 1.26                                                                                                            | 101           | 1.44          | 95-1   | 1.62           | 121          | 1.86     | 1.94     | 2.16   | <b>1</b>             | 2.28<br>2.14   | 1           | •      |
|              | Morrison-Maierte/CSSA<br>Miner Flat<br>943-27691 | 222<br>6<br>7-Nov-95                                                   |                                      | Tep<br>Bottom                                        |                              |                                                      |                                | 12:09,43                | Elapsed time<br>(hours) | (cinon)              | 0.00     | 00.0           | 0.00     | 0:00           | 10.0           | 10.0                          | 10.0           | 10:0     | 10:0     | 0.02           | 0.02           | 20.0       | 0.02                                                                                                            | 0.02          | 0.02          | 0.03   | 100            | 0.0          | 0.03     | CO:O     | 0.04   | 10'0                 | 0.04           | P.04        |        |
| 100000       | Client<br>Site<br>Project No.                    |                                                                        | Borchole diameter<br>Borchole radius | Test acction location                                | Length of test interval      | Gauge Level<br>Static Water Level                    | General Lithology<br>Sandstone | Start Time              | Clock<br>Time           |                      | 12.09.43 | 12,09,50       | 12.09.54 | 12.09.57       | 12:10:05       | 12:10:15                      | 12:10:19       | 12:10:26 | 12.10.33 | 12:10:41       | 12:10:44       | 12.10.55   | 12.10.59                                                                                                        | 12.11.06      | 12.11.09      | 121121 | 12:11:24       | 12:11:27     | 12:11:35 | 12:11:42 | 121159 | 00 11 71<br>10 11 11 | 11.12.03       | 17:12.03    |        |

**Golder Associator** 

25206A CHA, lique Data

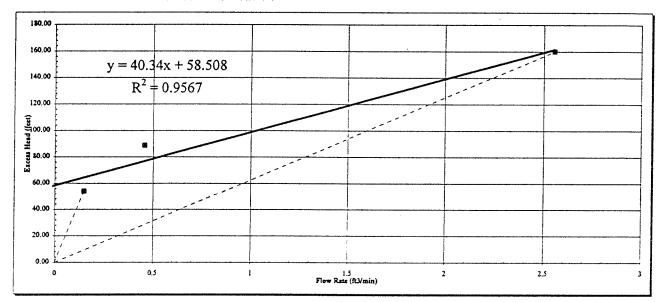


i



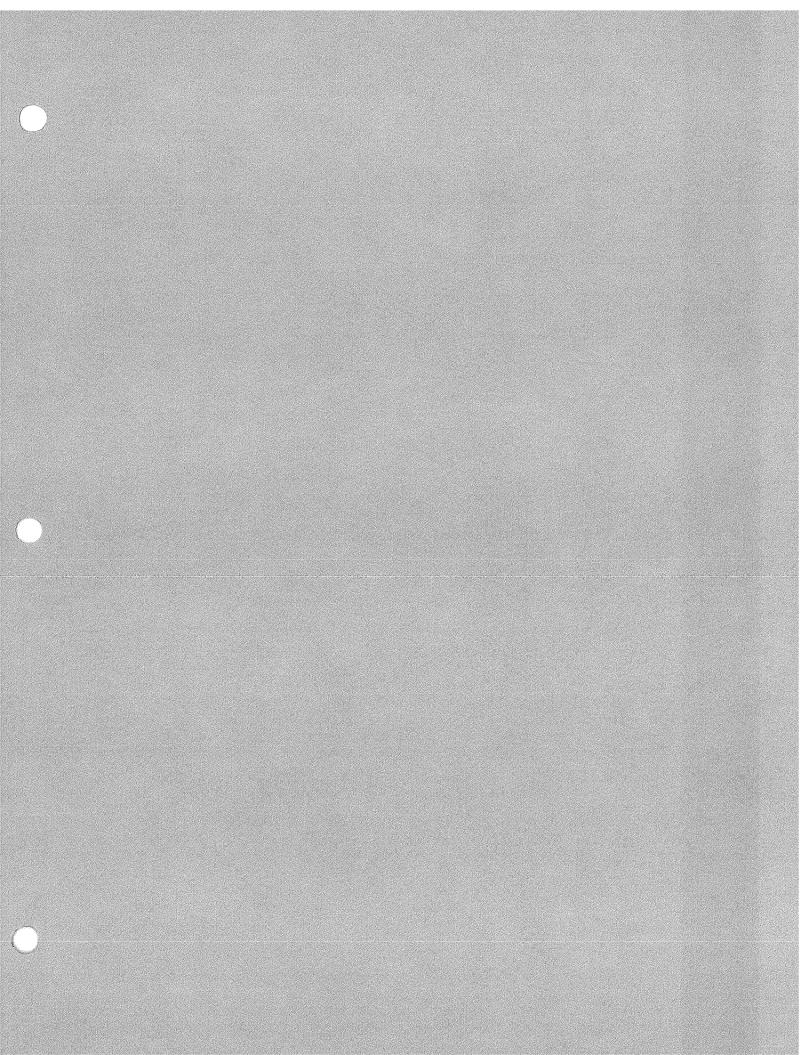
(.,

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |


Borehole Interval Number

Plot data

252

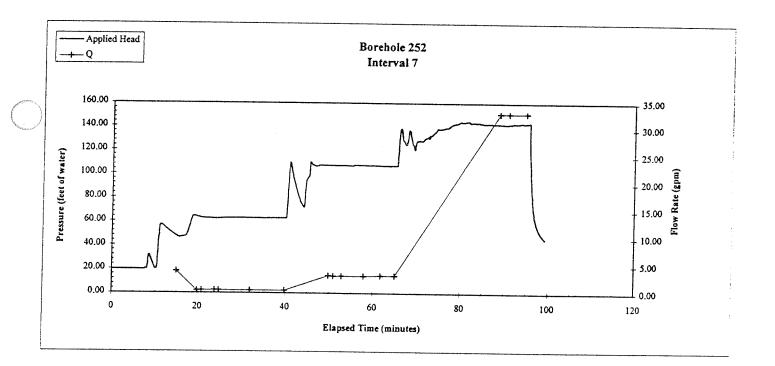

6

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 54.04           | 1.100         | 0.1471                 |
| 88.77           | 3.400         | 0.4546                 |
| 160.00          | 19.100        | 2.5537                 |
|                 |               |                        |
|                 |               |                        |



| K = 1/(2   | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | Q = Flow<br>he = App<br>L = lengt | aulic cond<br>/ rate<br>lied head<br>h of inter-<br>ole radius | val tested                   | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|-----------------------------------------|-----------------------------------|----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| Range of h | ydraulic conductivity                   |                                   |                                                                |                              |                                                                    |
| K =        | 4.4E-05 cm/s<br>8.6E-05 feet/min        | Q =<br>h <sub>e</sub> =           | 0.147<br>54.04                                                 | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | 2.6E-04 cm/s<br>5.1E-04 feet/min        | Q =<br>h <sub>e</sub> =           | 2.554<br>160.00                                                | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | <b>4.0E-04 cm/s</b><br>7.9E-04 feet/min | Trendline Slope                   | 40.34                                                          |                              |                                                                    |

and the second s




| 0(1)16( <u>7-</u> 194 |                                                              |                                                                                 |                                                                     |                                                                | 3                                            | Average Q<br>(gal/min)           |         |                |                | <b>3</b> 0 0 | 00.0          | 0.00           | 8<br>8<br>9<br>9 | 00.00          | 0.00      | 0000      | 0000              | 0.00         | 000               | 000           | 0.00    | 0.00    | 980          | 0000            | 0.00           | 000            | 00 (0<br>00 (0 | 800         | 990              | 90.0          |
|-----------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------|---------|----------------|----------------|--------------|---------------|----------------|------------------|----------------|-----------|-----------|-------------------|--------------|-------------------|---------------|---------|---------|--------------|-----------------|----------------|----------------|----------------|-------------|------------------|---------------|
| ()                    |                                                              |                                                                                 |                                                                     |                                                                | 5 Point Moving Averages                      | Δ time<br>(miautes)              |         |                |                | 0.0<br>0.0   | 0.0           | 0.00           | 000              | 00'0           | 0.00      | 000       | £0:0 <del>-</del> | <b>CO</b> O- | 60.0 <del>1</del> | 0.00          | 0.0     | 0.01    | (0.0<br>(0.0 | 0 00            | 0.00           | 800            | 000            | 10.07       | 0.0              | 0.0           |
|                       |                                                              |                                                                                 | laterval<br>Vertical Depth (ft)<br>Abore 169.9                      | 9.971                                                          | 5 Point M                                    | Applied Head<br>(feet of water)  | •       |                | :              | 19.67        | <b>19</b> ,61 | 19.61<br>19.41 | 19.61            | 19,61          | 19.61<br> | 19.68     | 19.68             | 19.67        | 79.61             | <b>39</b> 761 | 99.61   | 19.67   | 19.61        | 89.61           | 19.64          | 19.68<br>19.68 | 19.61          | 99/61       | 19.66            | 19.65         |
|                       |                                                              | t calculation -                                                                 | 3                                                                   | Bedow 180.00 Below<br>Vertical depth of bottom of interval (f) |                                              | Average Q<br>(gal/min)           |         |                | 000            | 0.0          | 0.00          | 0.0            | 00.0             | 0.00           | 000       | 00.0      | 0.00              | 8.8          | 0.0               | 00.0          | 0.00    | 0.00    | 0.00         | 0.00            | 000            | 000            | 000            | 00.0        | 0.00             | 00.0          |
|                       |                                                              | True vertical dentis calculation -                                              | Hole depth (f)<br>Above                                             | Beiow<br>artical depth of h                                    | 3 Point Moving Averages                      | Δ time<br>(mins)                 |         |                | 0.0            | 0.0          | 0.0           | 8.8            | 0,0              |                | 8 8       | 8         | 80.0              | 6.0          | 80                | 0,00          | 0.0     | 10°0    | 8            | 0.00            | 8.9            | 800            | 907            | 6.0         | -0.07            | 0.00          |
|                       |                                                              | Ē                                                                               | erval<br>Vertical Depth (N) Hc<br>Abova 169.9                       | 179.9<br>176.26 Ve                                             | 3 Point                                      | Applied Head<br>(feet of water)  |         | :              | 90.71<br>19.66 | 19.67        | 19.66         | 19 19          | 19.68            | 19.68          | 40%I      | 19.61     | 19.65             | 19.67        | 19.66             | 19.66         | 19.66   | 19.67   | 19.65        | 19.61           | 19.68<br>19.68 | 19.66          | 19.61          | 19.67       | 19.65            | 19.64         |
| $\bigcirc$            | Tert Type:                                                   | Constant mean, Suradote packar<br>Gauge located dewalsolo                       | Top of interval<br>Vertica<br>140.00 Above                          | Below 130.00 Below<br>Vertical depta of top of interval (ft)   |                                              |                                  |         |                |                |              |               |                |                  |                |           |           |                   |              |                   |               |         |         |              |                 |                |                |                | 144 · · · · | 1.<br>           |               |
|                       | Test Type:<br>Constant build                                 | Constant mead, Straddie<br>Gauge located devrahols<br>True vertical depth calcu | Hole depth (ft)<br>Above                                            | Below<br>Vertical dept <b>h</b> ol                             |                                              | Q<br>(gal/min)                   |         |                |                |              |               |                |                  |                |           |           |                   |              |                   |               |         |         |              |                 |                |                |                |             |                  | d'i           |
|                       |                                                              |                                                                                 |                                                                     | <b>m</b> -                                                     |                                              | Applied Head<br>(feet of water)  | 99.61   | 29.61<br>20.01 | 19.66          | 19.61        | 19.68         | 19.68          | 19.61            | 19.68<br>19.64 |           |           | 19.68<br>19.68    |              |                   |               | 90 fi   |         |              | 19.61<br>1 a źw | 19.61          | 19.68          | 19.61          | 19.68       | 19.66            | 19.61         |
|                       |                                                              | inch <b>a</b>                                                                   | foot<br>foot below top of casing<br>foot below top of casing        | feet below top of cusing<br>foet below top of cusing           |                                              | Measured Head<br>(fect of water) | 0.01    | to:0           | 10.0           | 0.03         | (0))<br>(0))  | 10.0           | 0.03             | (0.0<br>(0.0   | 0.03      | 0.03      | 0.03              | 0.01         | 0.01              | 10:0          | 10.0    | 0.03    | 0.03         | 10.0<br>10.0    | <b>10</b> 10   | 0.0            | 0.03           | 0.03        | 10:0             | <b>3</b> 0'0' |
|                       | rle/CSSA                                                     | 3.78                                                                            | 0.16<br>146,36<br>171.94<br>25 58                                   | 139.50<br>163.88                                               |                                              | Elapsed time<br>(minutes)        | 000     | 0.06           | 0.18           | 0.30         | 09.0          | 0.66           | 0.66<br>21       | 8C.0           | 0.14      | 96-0<br>- | 1.14              | 1.20         | 1.26              | 8C1           | 8       | 1.62    |              | 1               | 1.98           | 2.04           | 2.16           | <b>1</b>    | 2.28             | *7            |
|                       | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691<br>252<br>7 | 26-voV-8                                                                        | Top<br>Bottom                                                       |                                                                | 7:40:12                                      | Elapsed time<br>(hours)          | 000     | 000            | 0.00           | 10.0         | 10.0          | 10.0           | 10.0             | 10.0           | 10.0      | 0.02      | 0.02              | 0.02         | 0.02              | 0.02          | 0.03    | [0:0    | C0.0         | <b>E0</b> 0     | 0.03           | 0.03           | 10:0           | 10:0        | 10<br>10<br>10   | 5             |
| Monte                 | Client<br>Site<br>Project No.<br>Borchole<br>Test Number     | 5                                                                               | Borchole radius<br>Test section location<br>Learth of test interval | Gauge Depth<br>Static Water Level                              | General Lithology<br>Sundstone<br>Start Time | Clock<br>Time                    | 7:40:12 | 7:40.19        | 7.40.23        | 7:40,30      | 7.40.48       | 7.40.52        | 7 40-55          | 7:40:59        | 7.41:02   | 7:41:10   | 7:41:20           | 7:41:24      | 7.41.28           | 16142         | 7:41:46 | 7.41.49 | 7.41.53      | 7:42.04         | 11:25:2        | 7:42.14        | 7:42:22        | 74234       | 7.137.1<br>TELEL | •             |

Culder Associates

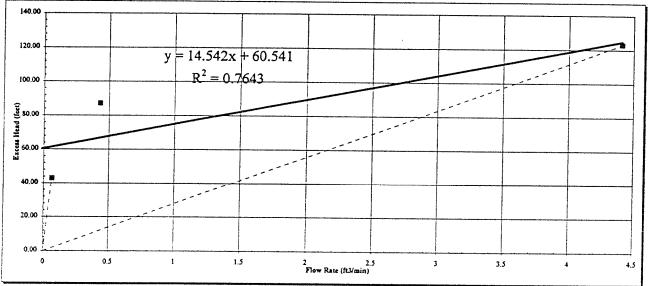
25207A.CHA, hput Dau

| Plot data used  | l in analysis |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 42.88           | 0.470         |
| 87.04           | 3.200         |
| 123.00          | 33.000        |

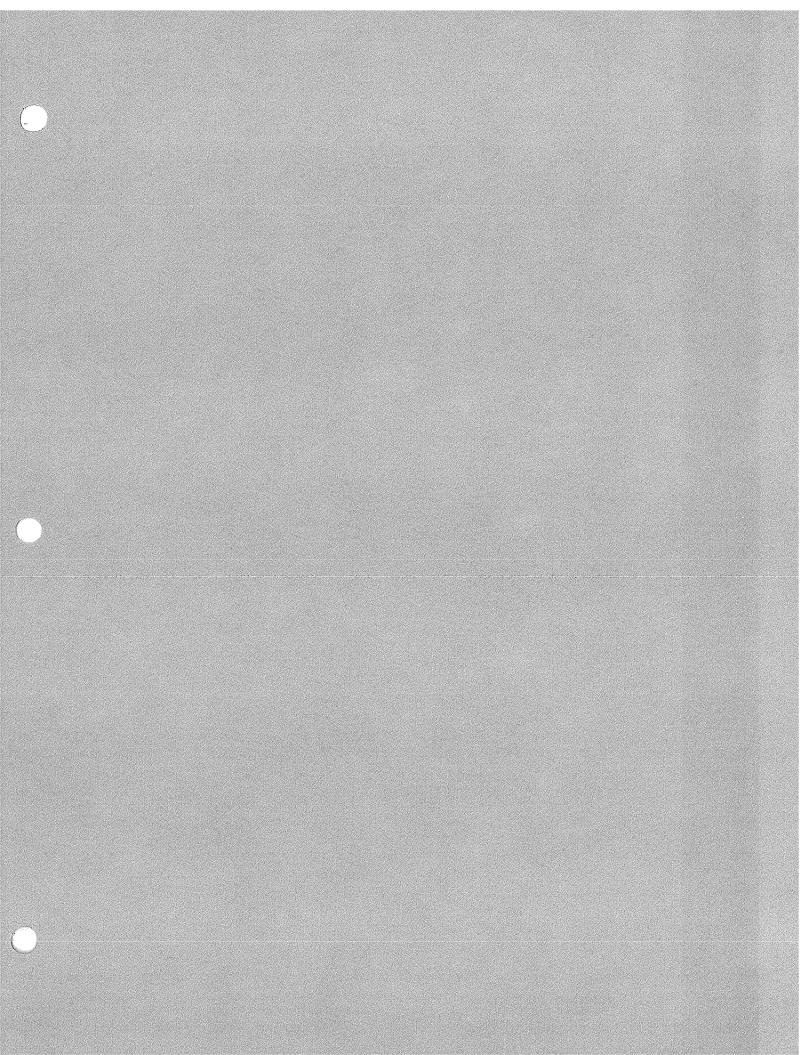


| Ì | Client      | Morrison-Maierle/CSSA |
|---|-------------|-----------------------|
|   | Site        | Miner Flat            |
|   | Project No. | 943-27691             |
|   |             |                       |

Borehole Interval Number


Plot data

252


7

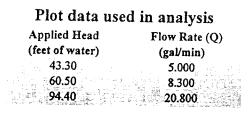
| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 42.88           | 0.470         | 0.0628                 |
| 87.04           | 3.200         | 0.4278                 |
| 123.00          | 33.000        | 4.4121                 |
|                 |               |                        |

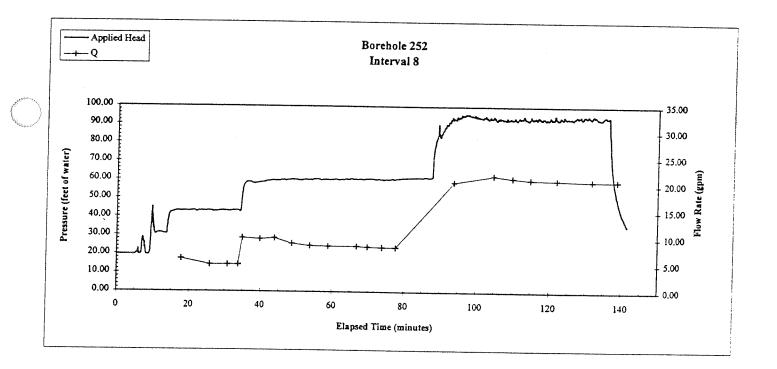




| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow<br>he = App    | v rate<br>llied head<br>h of inter | val tested                   | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------|-------------------------|------------------------------------|------------------------------|--------------------------------------------------------------------|
| Range of l | hydraulic conductivity                |                         |                                    |                              |                                                                    |
| K =        | 2.4E-05 cm/s<br>4.6E-05 feet/min      | Q =<br>h <sub>e</sub> = | 0.063<br>42.88                     | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | 5.8E-04 cm/s<br>1.1E-03 feet/min      | $Q = h_e =$             | 4.412<br>123.00                    | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | 1.1E-03 cm/s<br>2.2E-03 feet/min      | Trendline Slope         | 14.54                              |                              |                                                                    |




|                                                                                   |                                      |                                                      |                                        |                                           |                                | _                       | Average Q                 | (gal/min)       |               |               | 22.0         | 00.0     | 00.0         | 0.00           | 0.0     | 000     | 00.0            | 00.0<br>00.0       | 0.00           | 000           | 03.0           | 000       | 00.0    | 0.00    | 000            | 0000        | 000           | 0.00    | 0.00    | 00.0           | 8.0     | 0.00           |
|-----------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------|-------------------------|---------------------------|-----------------|---------------|---------------|--------------|----------|--------------|----------------|---------|---------|-----------------|--------------------|----------------|---------------|----------------|-----------|---------|---------|----------------|-------------|---------------|---------|---------|----------------|---------|----------------|
|                                                                                   |                                      |                                                      |                                        |                                           |                                | 5 Point Moving Averages | Δ time                    | (minutes)       |               |               | C0 0         | 00.0     | 0.00         | 10 0           | 800     | 0 00    | 000             | 00.0               | 0.00           | 00.0          | 0.00           | 0.00      | 00'0    | 0.00    | 000            |             | 00:0          | 01.0    | 0.00    | 0.00           | 000     | 8              |
|                                                                                   |                                      | iaterval<br>Vertical Depth (ft)                      | 16.91                                  | 5C.991                                    |                                | 5 Point Mc              | Applied Head              | (feet of water) |               |               | 0761         | 19.59    | 19.59        | 19.59<br>14 40 | 65,61   | 19.59   | 19.39<br>19 50  | 92.91              | 19.59          | 19.59         | 65 61<br>65 61 | 19.59     | 19.59   | 19.59   | 19.39<br>18 48 | 92.91       | 19.59         | 19.59   | 19.59   | 19.39<br>19.66 | 40.61   | 40.41<br>02 01 |
|                                                                                   | is calculation:                      | 2                                                    | 140.00 Above 150.00 Below              | Vertical depth of bottom of interval (ft) |                                | Ages                    | Average Q                 | (gal/min)       |               | 55.0          | 0010<br>0010 | 0.0      | 0.00         | 00.0           | 00'0    | 0.00    | 00,00           | 0.0                | 0.00           | 8.6           | 00.0           | 0.00      | 0.00    | 00'0    | 000<br>000     | 98.0        | 0.00          | 00'0    | 00'00   | 0.0<br>0       | 80      | 000            |
|                                                                                   | Tree vertical depth calculation:     | Hole depth (ft)                                      | Above<br>Below                         | ertical depth of                          |                                | 3 Point Moving Averages | $\Delta$ time             | (anina)         |               | 504           | 10.0         | 0.0      | <b>10</b> 19 | 8.0            | 00.0    | 0.0     | 8 8             | 970                | 0.0            | 8.8           | 8              | 0,00      | 0.0     | 8.8     | 8              | 00.0        | 0.00          | 0.00    | 0.00    | 8              | 900     | 000            |
|                                                                                   | F                                    |                                                      | 119.9                                  | V 61.021                                  |                                | 3 Point                 | Applied Head              | (feet of water) |               | 09 61         | 09.61        | 19.60    | 09.61        | 95.6I          | 19.59   | 65.61   | 65.61           | 19.59              | 92.91<br>22.21 | 4C.41         | 65.61          | 65.61     | 19.59   | 4C.VI   | 67.61          | 19.59       | 19.39         | 19.59   | 95.91   | 92.91<br>92.91 | 19.59   | 19.59          |
| idie packer<br>seie                                                               | alculation:                          | Top of interval<br>Vertical                          | 120.00 Above<br>130.00 Below           | of interval (ft)                          |                                |                         | •                         |                 | ħ             |               | <u>.</u>     | . 4      |              |                |         |         |                 |                    |                | £             |                | ar ,      |         |         | c" .           |             | 5.14          |         |         |                |         |                |
| Teil Type:<br>Coaitai baad, Straddle packar<br>Gauge located drwhole              | True vertical depth calculation:     | cpth (N)                                             | Below                                  | Vertical depth of top of Interval (f)     |                                |                         | ð                         | (gaVmin)        |               |               |              |          |              |                |         |         |                 |                    |                |               |                |           |         |         |                |             |               |         |         |                |         | •<br>•         |
| e c                                                                               | Tn                                   | °H.                                                  | Below                                  | Ve                                        |                                |                         | Applied Head              | (ICCI OI MAIEL) | 19.59         | 19.21         | 19.59        | 19761    | 4C.41        | 65.61          | 19.59   | 19.39   | 19.39           | 19.39              | 95.91          |               |                |           | 45.91   |         |                |             |               | 92.91   |         | 19.39          | 19.59   | 19.59          |
|                                                                                   | inches<br>6                          | feet below top of casing<br>feet below ton of casing | foot<br>foot<br>foot to construction   | feet below top of casing                  |                                |                         | Measured Head             | (ICCI 01 #41CL) | <b>38</b> .07 | <b>3</b> 0.07 | -0,06        | 2.0      | 8 8          | -0.06          | -0.06   | 88      | -0-CP           | 20.02<br>200       | 5 73<br>70     | <b>90</b> .04 | -0.06          | <b>19</b> | 93 (P   | -0.06   | -0.0 <b>6</b>  | 90.04       | 28<br>29<br>2 | 8 1     | 8 28    | 90.0           | -0.06   | 90 (P          |
| elcssA                                                                            | 3.78 inch                            |                                                      |                                        | 163.88                                    |                                |                         | Elapsed time<br>(minuter) |                 | 90 00         | 0.12          | 0.18         | 0.0      | 0.42         | 0.54           | 09.0    | 0.78    | 0.84            | 96-0<br>-          | 11             | 1.20          | 1.26           | 131       | *       | 1.62    | 1.68           | 01.1        | 9 <b>5</b>    | 2.01    | 2.10    | 1.1            | 2.28    | 2.34           |
| Morrison-Maleriz/CSSA<br>Miner Flat<br>943-27691<br>252<br>8<br>8<br>2-00-95      |                                      | T op<br>Bottom                                       |                                        |                                           |                                | 9:46:18                 | Elapsed time 1<br>(hours) |                 | 0000          | 0,00          | 0.00         | 10.0     | 0.01         | 10.0           | 10.0    | 10.0    | 0.01            | 0.02               | 0.02           | 0.02          | 0.02           | 70'D      | 10.0    | 60.0    | 0.03           | <b>60.0</b> | 000           | 0.0     | H0:0    | 10.0           | 10:0    | <b>1</b> 0:0   |
| Client N<br>Site No.<br>Project No.<br>Borchole 2<br>Test Number 8<br>Test Date 4 | Borehole diameter<br>Borehole radius | Test section location                                | Length of test interval<br>Gauge Deuth | Static Water Level                        | General Lithology<br>Sandstone | Start Time              | Clock<br>Time             |                 | 9,46,22       | 9.46.25       | 9.46:29      | 0,045,04 | 9:46.43      | 01:04:30       | 9:46:54 | 9.47.05 | 9.47,0 <b>0</b> | 9:47:16<br>9:47:19 | 9.47.26        | 9.47.30       | 9.47.34        | 9:47:44   | 9.47.52 | 9.47:55 | 9.47.59        | 9.48.06     | 9.48.17       | 9.48.20 | 9:48:24 | 9:48:31        | 9.44.35 | 9.48.38        |


25208A.CHA, Input Data

Gulder Associates

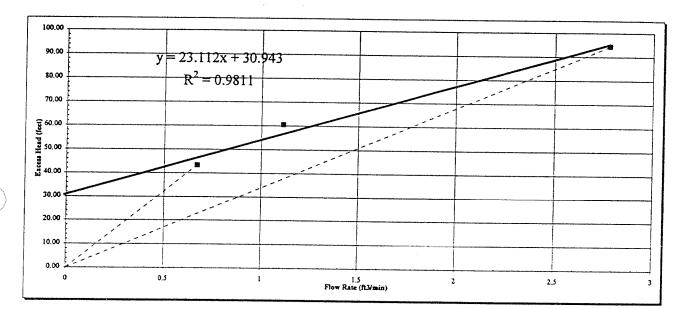
OET IGET EFF

avantut



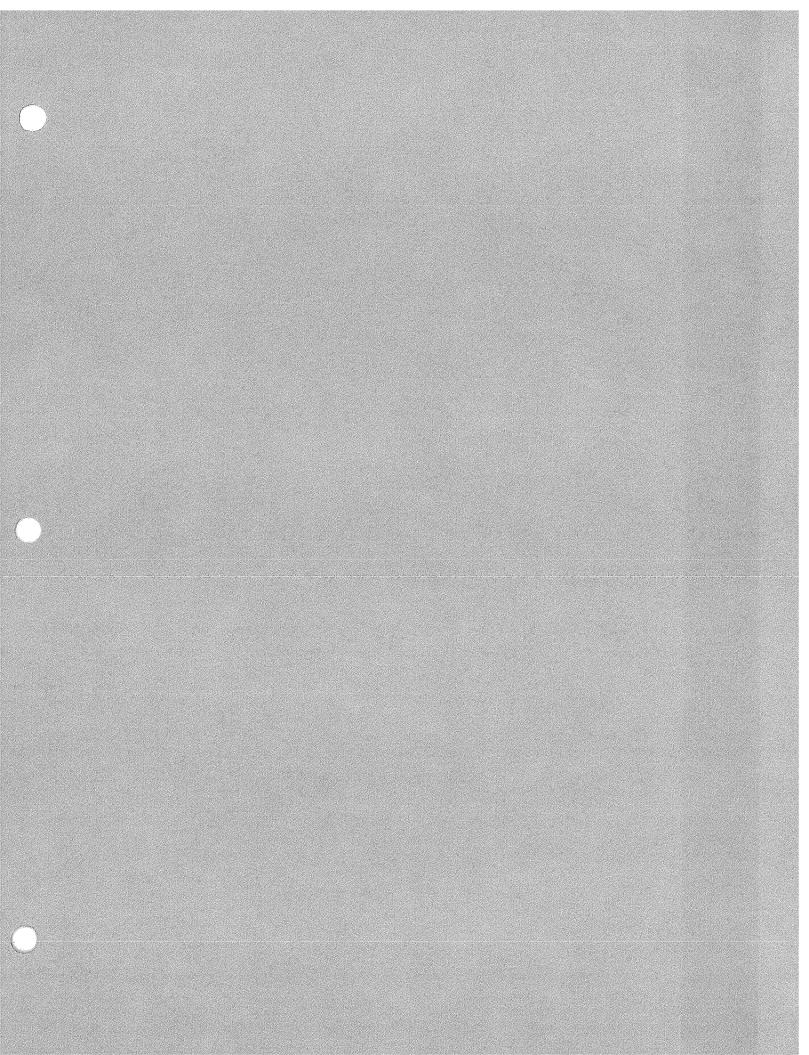


| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |


Borehole Interval Number

Plot data

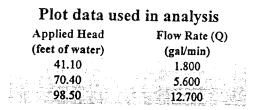
252

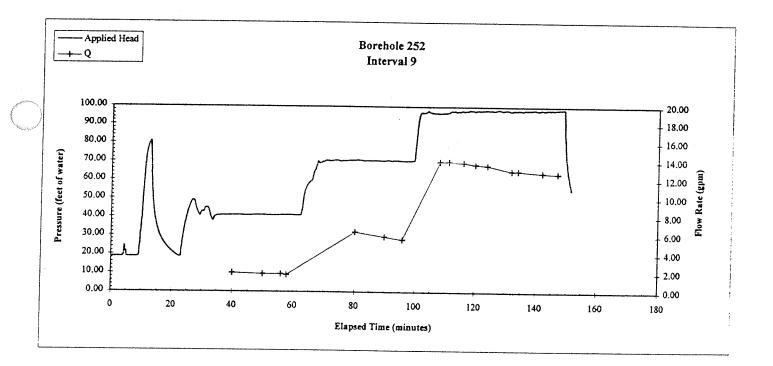

8

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 43.30           | 5.000         | 0.6685                 |
| 60.50           | 8.300         | 1.1097                 |
| 94.40           | 20.800        | 2.7810                 |



| K = 1/(    | 2πL) x (Q/ḥ_) x ln (L/r)                | K = hydraulic conductiv<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tes<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet) |
|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Range of l | ydraulic conductivity                   |                                                                                                                    |                                  |
| K <b>≃</b> | 2.5E-04 cm/s<br>4.9E-04 feet/min        | Q = 0.669 $ft^3/m$<br>h <sub>e</sub> = 43.30 feet                                                                  | in                               |
| K =        | <b>4.7E-04 cm/s</b><br>9.3E-04 feet/min | $Q = 2.781 \text{ ft}^3/\text{m}$<br>$h_e = 94.40 \text{ feet}$                                                    | in                               |
| K =        | <b>6.9E-04 cm/s</b><br>1.4E-03 feet/min | Trendline Slope 23.11                                                                                              |                                  |


( alana .




| 0111612-696 |                                                                                                                                                                                                                                                                                                                                                     | 2                       | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             |                                                                                                                                                                                                                                                                                                                                                     | 5 Point Moving Averages | Δ time<br>(minutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00  |
|             | epith (ft)<br>[19.95]<br>[20.87]                                                                                                                                                                                                                                                                                                                    | 5 Point M               | Applied Head<br>(feet of water)<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>11.65<br>1 | 18.64 |
|             | True vortical depth calculation:<br>Bottom of interval<br>Hole depth (ft) Vertical Depth (ft)<br>Above 120.00 Above 11<br>Bolow 12.120.00 Below 11                                                                                                                                                                                                  | li ce                   | > bù                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00  |
|             | True vertical depth calculation:<br>Bottona<br>Hole depth (ft)<br>Above 120.00<br>Beiow 6 120.00<br>Vertical depth of bottom of later                                                                                                                                                                                                               | 3 Point Moving Averages | $\Delta time (mins) = 0.00 (mins) - 0.01 (mins) - 0.00 (mins) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0'00' |
|             | er<br>I:<br>T<br>Vertical Depth (n)<br>H<br>Moore<br>93,95<br>Bdow<br>93,31<br>V<br>V<br>1 (n)<br>93,31<br>V                                                                                                                                                                                                                                        | 3 Point                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.64 |
| $\bigcirc$  | ead, Straddo pack<br>ted dewrabole<br>al depith calculatio<br>(n)<br>2000,00<br>pith of top of latery                                                                                                                                                                                                                                               |                         | O Ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|             | Teri Type:<br>Constant h<br>Gauge loca<br>True vertic<br>Hote depth<br>Below<br>Vertical de                                                                                                                                                                                                                                                         |                         | Applied Head<br>(cet of water)<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |
|             | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                                                                                                                                                                                      |                         | Measured Head<br>(feet of water)<br>- 001<br>- 002<br>- 001<br>- 001     |       |
|             |                                                                                                                                                                                                                                                                                                                                                     |                         | Elapsed time<br>(minutes)<br>000<br>004<br>014<br>014<br>014<br>014<br>014<br>014<br>014<br>014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|             | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691<br>252<br>9<br>8-Nov-95<br>8-Nov-95<br>8-109<br>8-10<br>8-10<br>8-10<br>120,9<br>8-10<br>120,9<br>10,131                                                                                                                                                                                           | 12:28:04                | Elapsed time<br>(hours)<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| () )        | Client<br>Site<br>Project No.<br>Borchole<br>Test Number<br>Test Number<br>Test Number<br>Borchole diameter<br>Borchole diameter<br>Borchole diameter<br>Borchola location<br>Cauge Depta<br>Static Water Level<br>Static Water Level<br>Static Water Level<br>Static Water Level<br>Static Water Level<br>Static Water Level<br>Static Water Level | Start Time              | Clock<br>Time<br>Time<br>12.864<br>12.865<br>12.865<br>12.865<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265<br>12.265                                                                                                                                            |       |

**Golder Associates** 

25209A CHA, liquí Data

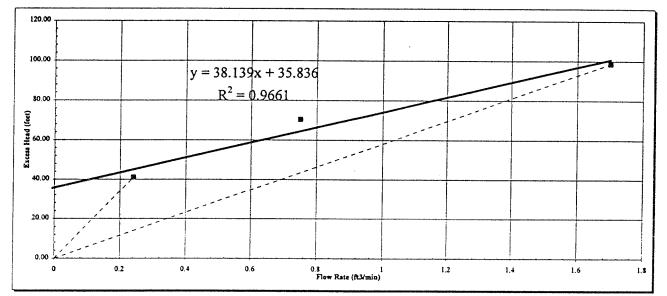




(

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole Interval Number


Plot data

252

9

| Applied Head    | Flow Rate (Q)                         | Flow Rate (Q)          |  |  |  |  |  |  |  |  |
|-----------------|---------------------------------------|------------------------|--|--|--|--|--|--|--|--|
| (fect of water) | (gal/min)                             | (ft <sup>3</sup> /min) |  |  |  |  |  |  |  |  |
| 41.10           | 1.800                                 | 0.2407                 |  |  |  |  |  |  |  |  |
| 70.40           | 5,600                                 | 0.7487                 |  |  |  |  |  |  |  |  |
| 98.50           | 12.700                                | 1.6980                 |  |  |  |  |  |  |  |  |
|                 | · · · · · · · · · · · · · · · · · · · |                        |  |  |  |  |  |  |  |  |





K = hydraulic conductivity

L = length of interval tested (feet)

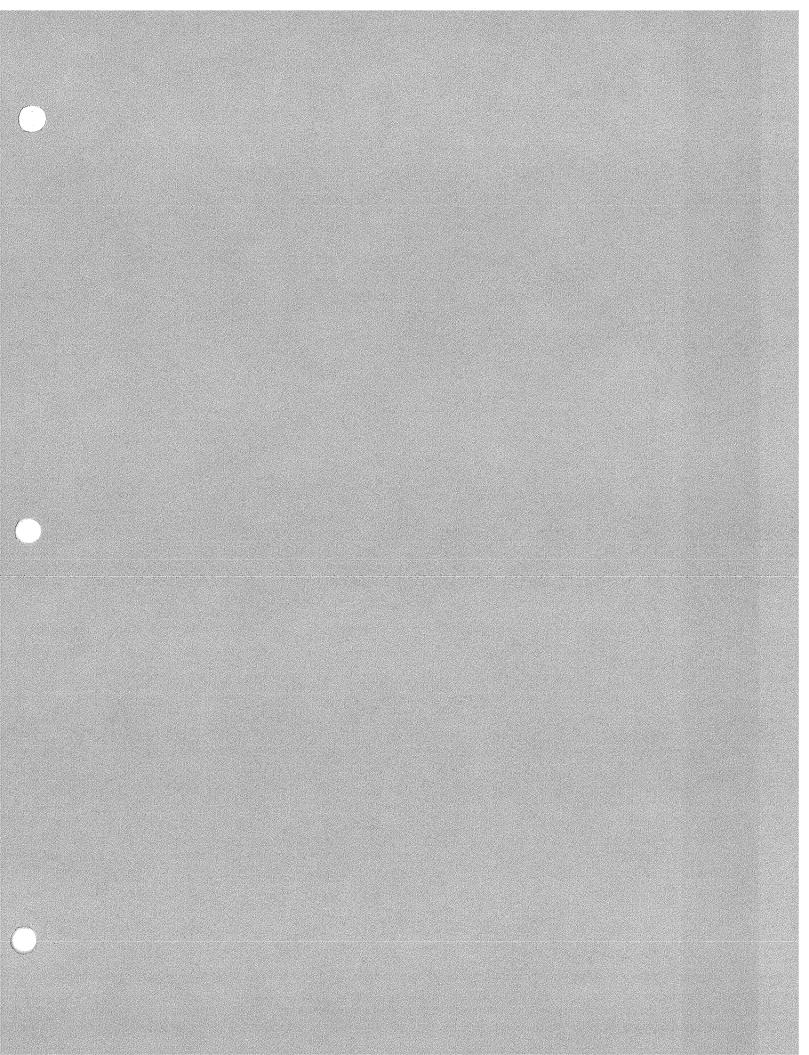
Q = Flow rate

he = Applied head

r = borehole radius

(feet/min).

(ft<sup>3</sup>/min)


(feet)

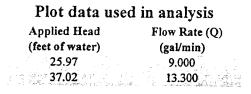
(feet)

| $K = 1/(2\pi L) \times (Q/h_{r}) \times \ln (L/r)$ |     |         |        |        |        |
|----------------------------------------------------|-----|---------|--------|--------|--------|
|                                                    | K = | 1/(2#1) | x (O/h | ) v In | (T /r) |

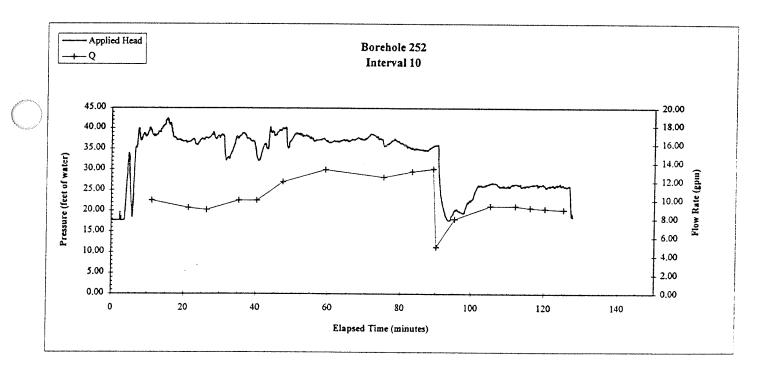
Range of hydraulic conductivity

| K = | 9.4E-05 cm/s<br>1.9E-04 feet/min | Q =<br>h <sub>e</sub> = | 0.241<br>41.10 | ft <sup>3</sup> /min<br>feet |
|-----|----------------------------------|-------------------------|----------------|------------------------------|
| K = | 2.8E-04 cm/s<br>5.5E-04 feet/min | $Q = h_e = 0$           | 1.698<br>98.50 | ft <sup>3</sup> /min<br>feet |
| K = | 4.2E-04 cm/s<br>8.3E-04 feet/min | Trendline Slope         | 38.14          |                              |




| QE1.1972-1 <del>1</del> 9             |                                                  |                                                                        |                                  |                                          |                                         |                                                      |                                                |                         | Ø,                               | (a              |          |               |             |          |             |                |         |                                                    |              |          |                 |          |          |          |                  |              |            |          |          |            |            |                |              |             |
|---------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------|----------------------------------|-----------------|----------|---------------|-------------|----------|-------------|----------------|---------|----------------------------------------------------|--------------|----------|-----------------|----------|----------|----------|------------------|--------------|------------|----------|----------|------------|------------|----------------|--------------|-------------|
| i i i i i i i i i i i i i i i i i i i |                                                  |                                                                        |                                  |                                          |                                         |                                                      |                                                | ទ                       |                                  | (galvain)       |          |               | 0.0         | 0.0      | 0.0         | 800            | 0,00    | 8 8                                                | 8.8          | 0.00     | 0.0             | 8 8      | 0.0      | 0.00     | 0.00             | 8 8          | 00.0       | 00'0     | 0.00     | 80.0       | 000        | 0.0            | 0.0          | 0.00        |
| $\left( \right)$                      |                                                  |                                                                        |                                  |                                          |                                         |                                                      |                                                | 5 Point Moving Averages | Δ time                           | (minutes)       |          |               | 00.0        | 1010     | 800         | 8.6            | 0.02    | 00.0                                               | 0.00         | 0.00     | 80              | 0.0      | 0.00     | 0 00     | 0.00             | 00.0         | 00.0       | 00:0     | 00.0     | 00.0       | [0]0       | 2.05           | <b>8</b> 0.0 | 60°.17      |
|                                       |                                                  |                                                                        |                                  | liaterval<br>Vertical Denib (ft)         | 29.95<br>29.95                          | 6['56                                                |                                                | 5 Point M               | Applied Head                     | (icei ni Maler) |          |               | 17.67       | 997.LI   | 17.67       | 13.67          | 17.67   | 17.65                                              | 17.65        | 17,68    | 197.11<br>17.62 | 17.68    | 17.68    | 17.64    | 17.61            | 17.64        | 17.68      | 17.68    | 17.68    | 17.64      | 17.68      | 11.09          | 18.04        | 18.06       |
|                                       |                                                  |                                                                        | h calculation:                   | Bottom of laterval<br>Vertical I         | 90.00 Above<br>100.00 Below             | Ę                                                    |                                                | 23                      | Average ()<br>(o=1/min)          |                 |          | 0.00          | 0.00        | 8.8      | 0.00        | 0.00           | 0.0     | 0.0                                                | 0.00         | 0000     |                 | 00.0     | 0.00     | 0.0      | 8.0              | 0:00         | 0.00       | 0.00     | 00.0     | 00.0       | 0.00       | 0.00           | 0.00         | 0.00        |
|                                       |                                                  |                                                                        | True vertical depth calculation: | Hole depth (A)                           | Above<br>Baiow                          | crtical depth of h                                   |                                                | 3 Point Moving Averages | Δ time<br>(mim)                  | ĺ               |          | 0.0           | 9<br>9<br>9 | 20.0     | 8.0         | 0.02           | 8.0     |                                                    | 0.0          | 8.8      | 8               | 0.0      | 0.00     | 88       | 8                | 9,0          | 0.00       | 0.0      | 800      | 0.0        | 00.0       | 0.03           | 2.05         | -0.12       |
|                                       |                                                  |                                                                        |                                  | erval<br>Vertical Depth (ft) Hi          | 59.97<br>69.96                          | 69.82 Ve                                             |                                                | 3 Point                 | Applied Head<br>(feet of water)  |                 |          | 17.66         | 17.66       | 17.67    | 17.67       | 1971           | 17.65   | 17.68                                              | 17.68        | 17.68    | 17.68           | 17.64    | 17.68    | 17.01    | 17,66            | 17.68        | 17.68      | 17.68    | 17.68    | 17.68      | 17.68      | 17.69          | 16.31        | 18.34       |
| $\bigcirc$                            |                                                  | Teit Type:<br>Coastant head, Straddle packer<br>Gauge located dowshole | True vertical depth calculation: | Top of int                               | \$0.00 Above<br>70.00 Below             | Vertical depth of top of interval (ft)               |                                                |                         | ( <b>म</b>                       |                 |          |               |             |          |             |                |         | i në për të së |              |          |                 |          |          |          |                  |              |            |          |          |            |            |                |              |             |
| 494294.                               |                                                  | Test Type:<br>Constant hy<br>Gauge local                               | True vertic                      | Hole depth (ft)                          | Above<br>Below                          | Vertical de                                          |                                                |                         |                                  |                 |          |               |             |          | *<br>3      |                |         |                                                    |              |          | a a             |          |          |          | 1840<br>19<br>19 |              |            |          |          |            |            |                |              | 1<br>1.<br> |
|                                       |                                                  |                                                                        |                                  |                                          |                                         |                                                      |                                                |                         | Applied Head<br>(feet of water)  | 17,62           | 17.68    | 17.62         | 17.68       | 17.68    | 17.66       | 17.68<br>17.68 | 17.68   | 17.68                                              | 17.68        | 17.67    | 17.68           | 17.68    | 17.68    | 17.68    | 17.68            | 17.68        | 17.68      | 17.68    | 17.68    | 17.68      | 17.61      | 17.61          | 17.91        | 2           |
|                                       |                                                  |                                                                        | inch <b>a</b>                    | feet<br>feet below top of casing         | feet below top of casing                | test below top of casing<br>fest below top of casing |                                                |                         | Measured Head<br>(fect of water) | 0.0-            | £0.0     | [0.0-<br>[0.0 | 0.03        | 0.03     | 10:0        | 0.03           | 0.03    | £0.0                                               | 10.0<br>10.0 | 0.02     | 0.03            | 0 0 0    | 0.0      | 0.0      | 0.03             | 000<br>300   | 500<br>100 | 10.0     | 0.03     | 0.03       | 600<br>100 | 0.04<br>A 0.04 | 2.05         | 2<br>       |
|                                       | JCSSA                                            |                                                                        |                                  |                                          | 95.44<br>25,58                          | 163,88                                               |                                                |                         | Elapsed time<br>(minutes)        | 00.0            | 0.06     | 0.15          | 0(.)0       | 96.0     | 0.42<br>9.6 | 090            | 0.72    | 0.78                                               | <b>3</b> 60  | 1.02     | 11              | 1.20     | 13       | 1.44     | 1.56             | 1.62         | 9          | 1.86     | 1.98     | 2.04       | n17        | 121            | 234          |             |
|                                       | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 252<br>10<br>8-Nov-95                                                  |                                  | Top                                      | Bellem                                  |                                                      |                                                | 15:16:52                | Elapsed time H<br>(hours)        | 0.00            | 000      | 000           | 10:0        | 10:0     | 10.0        | 10.0           | 10.0    | 100                                                | 0.02         | 0.02     | 0.02            | 0.02     | 0.02     | 0.02     | (0.0             | 60.0<br>10.0 | 6.03       | 0.03     | £0.0     | 0.03       | 100        | 0.0            | 0.04         |             |
| 130M                                  | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borebole diameter                | Borchoic radius<br>Test section location | Length of test interval<br>Course Proch | Static Water Level                                   | General Lithology<br>Sandstone/Coluvium/Baselt | Start Time              | Clock<br>Time                    | 13.16.52        | 13.16.56 | 15:17.03      | 13.17.10    | 15.17.14 | 12:17:51    | 15:17:21       | 5021151 | 15:17:42                                           | 15:17:50     | 65:71:51 | 13:14:00        | 15.11.05 | 15.14:15 | 15:14:14 | 15.18.26         | (C.81:51     | 15.11.40   | 15:18:44 | 15.18.51 | 15. 11. 51 | 15.19.05   | 15:19,09       | 15:19:12     |             |

Skocit


**Colider Associates** 

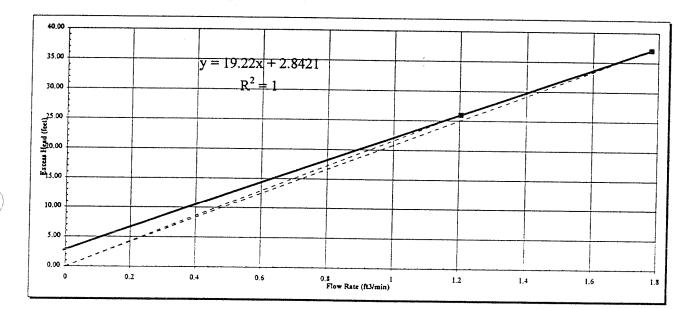
25210A CTEA, light Date

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array}\right)$ 

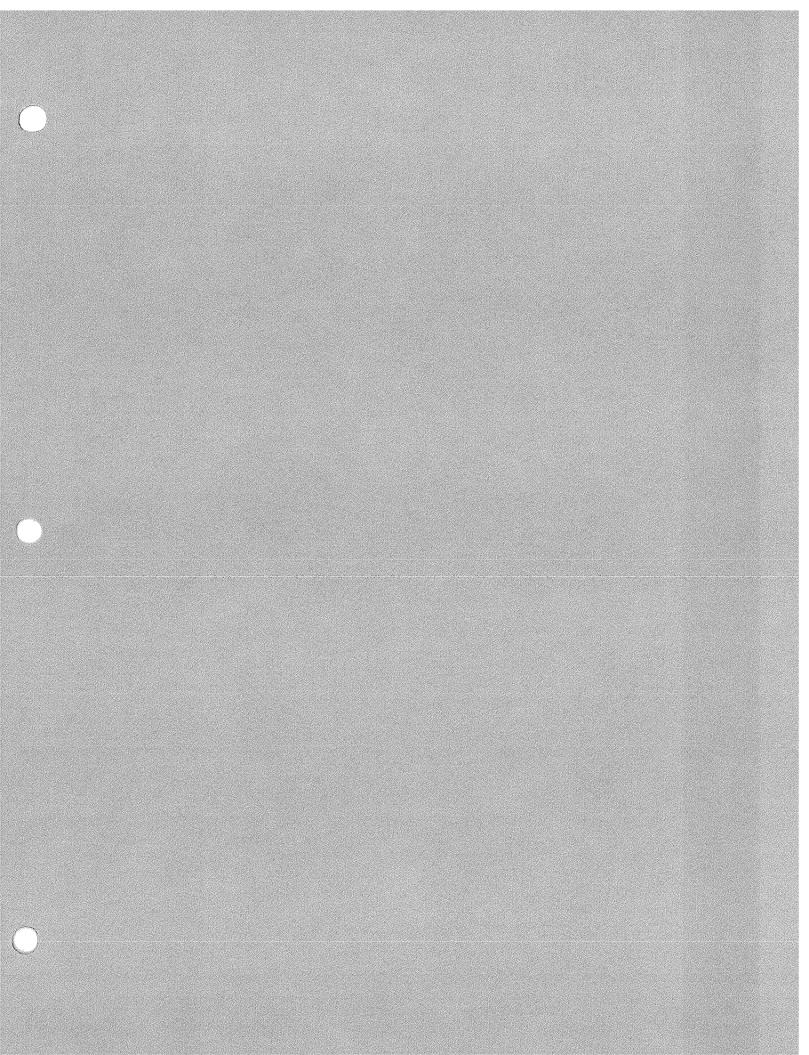


ţ




 $\left( \begin{array}{c} \\ \end{array} \right)$ 

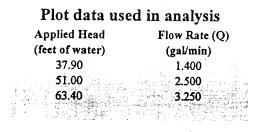
| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

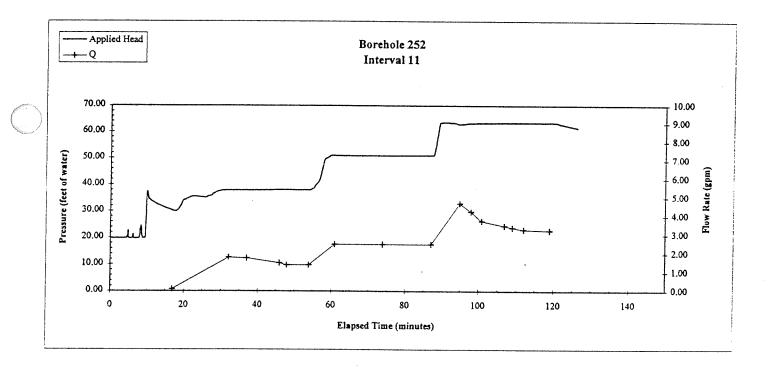

| Borehole        | 252 |
|-----------------|-----|
| Interval Number | 10  |

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 25.97           | 9.000         | 1.2033                 |
| 37.02           | 13.300        | 1.7782                 |




| K = 1/(    | (2πL) x (Q/h <sub>e</sub> ) x ln (L/r)  | Q = Flow<br>he = App<br>L = lengt | K = hydraulic conductivity $Q =$ Flow ratehe = Applied headL = length of interval testedr = borehole radius |  |  |  |  |  |  |  |
|------------|-----------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Range of l | hydraulic conductivity                  |                                   |                                                                                                             |  |  |  |  |  |  |  |
| K =        | 7.4E-04 cm/s<br>1.5E-03 feet/min        | Q =<br>h <sub>e</sub> =           | 1.203 ft <sup>3</sup> /min<br>25.97 feet                                                                    |  |  |  |  |  |  |  |
| K =        | 7.7E-04 cm/s<br>1.5E-03 feet/min        | Q =<br>h <sub>e</sub> =           | 1.778 ft <sup>3</sup> /min<br>37.02 feet                                                                    |  |  |  |  |  |  |  |
| K =        | <b>8.3E-04 cm/s</b><br>1.6E-03 feet/min | Trendline Slope                   | 19.22                                                                                                       |  |  |  |  |  |  |  |



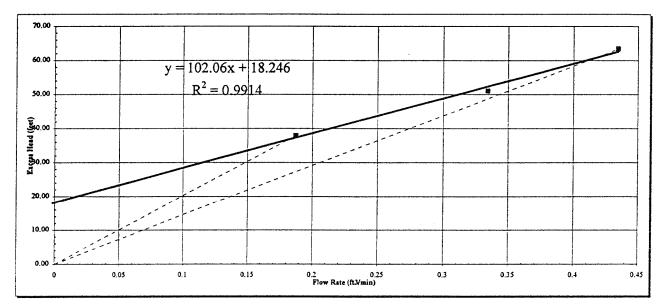

| 943-2791.130   |                                    |                                                                        |                                                   |                                                              |                                                      |                                           | Average Q                 | (gal/min)       |                |                    | 8            | 0.00           | 0.0               | 00.0                     | 0.00               | 00.00          | 8 :         | 00.0              | 0.00           | 00.0           | 000              | 000           | 00.0           | 0.00                | 0.0            | 00.00         | 0.00             | 0.00           | 0000             | 00.0                       | 3 2   |
|----------------|------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|---------------------------|-----------------|----------------|--------------------|--------------|----------------|-------------------|--------------------------|--------------------|----------------|-------------|-------------------|----------------|----------------|------------------|---------------|----------------|---------------------|----------------|---------------|------------------|----------------|------------------|----------------------------|-------|
| *              |                                    |                                                                        |                                                   |                                                              |                                                      | 240 a.14                                  | e Aven                    |                 |                |                    | ö            |                |                   |                          |                    | ō              | 0           | 6 ð               | 0.1            | ő              | 6 6              | . 3           | .0             | ō                   | 5 5            | 0.0           | 0.0              | 0.1            | 00               |                            | 000   |
| ( )<br>Kanalar |                                    |                                                                        |                                                   |                                                              |                                                      | 5 Point Movine Average                    | Δtime                     | (minutes)       |                |                    | 00.00        | 00.0           | 6.9               | £0.0-                    | 00.0               | 00.00          | 0000        | 00 00 00<br>10 00 | 0.0            | £0'0           | (0 <sup>-0</sup> | 0.00          | 000            | 0.00                | 10.0-          | E0:01         | E0.0-            | E0.0-          | 0.0              | 10.0                       | 0.02  |
|                |                                    |                                                                        |                                                   | Vertical Depth (ft)<br>Above 59.97<br>Below 60 ts            | 96 <sup>.</sup> 69                                   | S Point                                   | Applied Head              | (feet of water) |                |                    | <b>19.79</b> | 19.79<br>19.78 | 87.61             | 11.61                    | 19.76              | 19.76          | 19.76<br>25 | 19.76             | 19.76          | 19.77<br>19.76 | 19.78            | 19.79         | 62.61<br>10.70 | 19.79<br>19.79      | 19.78          | 19.7 <b>a</b> | 19.77            | 19.76          | 19.76<br>19.76   | 19.76                      | 97.61 |
|                |                                    |                                                                        | calculation:<br>Bottom of interval                | Vertical I<br>60.00 Above<br>70.00 Below                     | ferv                                                 | 3                                         | Average Q                 | (gal/min)       |                | 0.00               | 0.00         | 0,00           | 0.00              | 00.0                     | 0.0                | 0.00           | 0000        | 0.00              | 0.00           | 0000           | 0.00             | 0.00          | 000            | 00.0                | 0.00           | 0.00          | 00.0             | 0.0            | 0.00             | 000                        | 0.00  |
|                |                                    |                                                                        | True vertical depth calculation:<br>Bottom        | Hole depth (ft)<br>Abora<br>Babou                            | Vertical depth of be                                 | 3 Point Moving Averages                   | Δ time                    | (saims)         |                | 0.00               | 0.00         | 0000           | (0 <sup>.0-</sup> | 0.0 <del>.</del><br>0.00 | 99                 |                | 10.0-       | 10.0              | 0.0            | 100            | 9.6              | 0.00          | 00.0<br>0      | 8                   | 0.0            | £0,03         | 0.03             | 10'9           | 0.01             | 00'0                       | 0.00  |
|                |                                    |                                                                        | ·                                                 | Vertical Depth (n)<br>Above 39.97<br>Balow 49.97             | 44.55                                                | 3 Poin                                    | Applied Head              | (feet of water) |                | 97.61              | 19.79        | 67.81<br>67.81 | 19.78             | 19.76<br>19.76           | 19.76              | 19.76<br>19.75 | 19.76       | 19.76             | 19.76<br>12.21 | 19.70          | 19.79            | 19.79         | 19.79          | 19.79               | 97.61          | 19.78         | 19.11            | 19.76<br>19.76 | 19.76            | 19.76                      | 19.76 |
|                |                                    | traddle packer<br>wubolo                                               | th calculation:<br>Top of interval                | Vertici<br>40.00 Above<br>30.00 Balow                        | Vertical depth of top of interval (ft)               |                                           |                           |                 |                |                    | 1            |                |                   |                          |                    |                |             |                   |                |                |                  |               |                |                     |                |               | - : <sup>.</sup> |                |                  |                            | :,    |
|                |                                    | Test Type:<br>Constant head, Straddle packer<br>Gauge located dewnhole | True vertical deptb calculation:<br>Top of latery | Hole depth (f)<br>Above<br>Below                             | Vertical depth of                                    |                                           | ð                         | (galumin)       |                |                    | ·            |                |                   |                          |                    |                |             |                   |                |                |                  |               |                |                     |                |               |                  |                |                  |                            |       |
|                |                                    |                                                                        |                                                   |                                                              |                                                      |                                           | Applied Head              | (ICCI UI WAICE) | 97.91<br>19.79 | 19.79              | 19.79        | 19.79          | 19.79<br>10.76    | 19.76                    | 19.76              | 19.76          | 52.61       | 87.61<br>27.01    |                |                |                  | 19.79         | 61.91          | 19.79               | 19.79<br>10.70 | 67.61         | 19 76            | 19.75          | 19.76            | 19.76                      | 19.76 |
|                |                                    |                                                                        | inches<br>feet                                    | foot below top of caring<br>feet below top of caring<br>foot | foot below top of casing<br>foot below top of casing |                                           | Measured Head             |                 | 50 D           | (0))               | 50'0<br>10'0 | 0.03           | 0.03              | 99.0                     | 0.00               | 0.00           | 10.0-       | 0.00              | 80             | £0.0           | 0.03             | 0.01<br>10.01 | 0.0            | 0.03                | 0.03           | 00.0          | 90,0             | 10.0-          | 0.00             | 0000                       | 00.0  |
|                | Malerle/CSSA                       |                                                                        |                                                   |                                                              | 1 88.E91                                             |                                           | Elapsed time<br>(minutes) |                 | 90.0           | 0.12               | 0.24         | 0.36           | 0.54<br>10.0      | 0.60                     | <b>8</b> .0        | 101            | 1.06        | 111               | 97.1           | 1.26           | 151<br>121       | <u>5</u>      | 1.62           | 1.68                | 9 <b>9</b>     | 161           | 2.04             | 2.10           | 11               | 2.28                       | •     |
|                | Morrison-Maleric/CSSA<br>943-27691 | 252<br>11<br>9-Nov-95                                                  | 1                                                 | Pottam                                                       |                                                      | 8:31:09                                   | Elapsed time<br>(hours)   | 000             | 000            | 000                | 0.00         | 10.0           | 10.0              | 10.0                     | 0.02               | 0.02           | 0.02        | 0.02              | 0.02           | 0.02           | 0.02             | 60.0          | 0.03           | (9.0                | 0.0            | 60.0          | E0.0             | 10.0           | <b>1</b> 00      | <b>1</b><br>10<br>10<br>10 | Ş     |
| Jocu           | Client<br>Site<br>Project No.      | Borcholc<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius<br>Treeseit  | Length of test interval                                      | Static Water Level                                   | General Lithology<br>Basalt<br>Start Time | Clock<br>Time             | 901C1           | 8110           | 8.31.16<br>8.31.20 | 13123        | 10101          | IVIEN             | 8:31:45                  | 10:2018<br>01:2018 | B:32;14        | 8.32:14     | 12258             | 8.32.21        | 82328<br>2000  | 10200            | 8:32:43       | 8, 32, 46      | 6.12.50<br>12.01-12 | 10:55.8        | B0:EC:B       | 10001            | STOCE.         | 12:10:1<br>10:00 | 07:FF:#                    |       |

**Golder Associatos** 

25211A CHA, Input Data






| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        |                       |
| Project No. | 943-27691             |

| •               |     |
|-----------------|-----|
| Borehole        | 252 |
| Interval Number | 11  |

Interval Number

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 37.90           | 1.400         | 0.1872                 |
| 51.00           | 2.500         | 0.3343                 |
| 63.40           | 3.250         | 0.4345                 |



K = hydraulic conductivity (feet/min)

L = length of interval tested (feet)

(ft<sup>3</sup>/min)

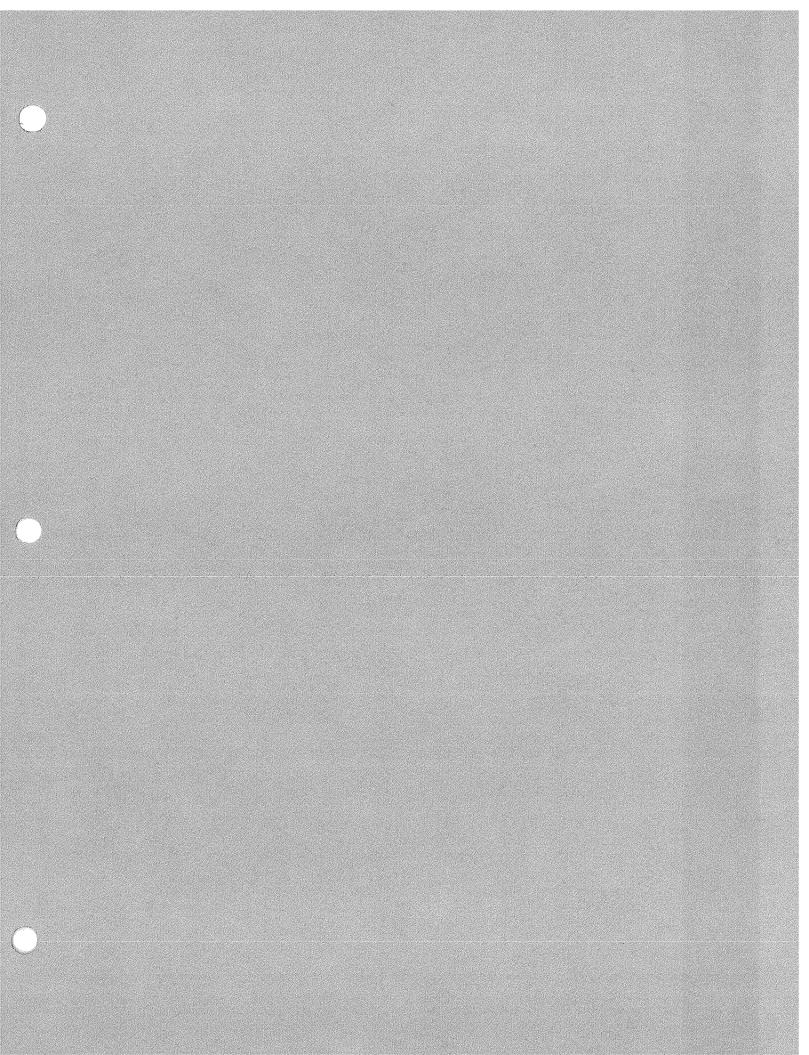
(feet)

(feet)

Q = Flow rate

he = Applied head

r = borehole radius

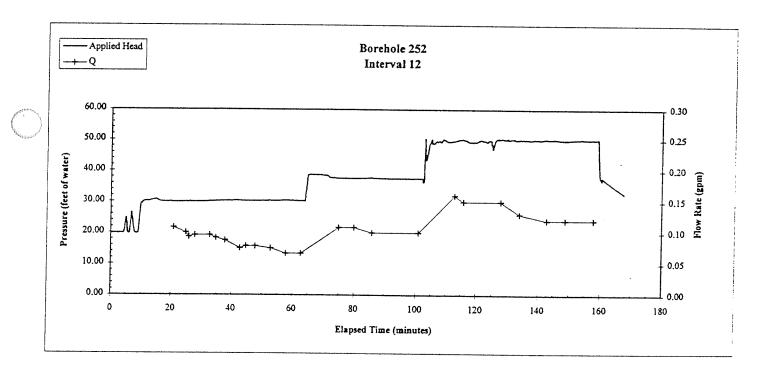

 $K = 1/(2\Pi L) \times (Q/h_e) \times \ln (L/r)$ 

Range of hydraulic conductivity

| K = | 8.0E-05 cm/s<br>1.6E-04 feet/min | Q =<br>h <sub>e</sub> = |                | ft <sup>3</sup> /min<br>feet |
|-----|----------------------------------|-------------------------|----------------|------------------------------|
| K = | 1.1E-04 cm/s<br>2.2E-04 feet/min | Q =<br>h <sub>e</sub> = | 0.435<br>63.40 | ft <sup>3</sup> /min<br>feet |
| K = | 1.6E-04 cm/s                     | Trendline Slope         | 102.06         |                              |

3.1E-04 feet/min

25211A.CHA, K calculation



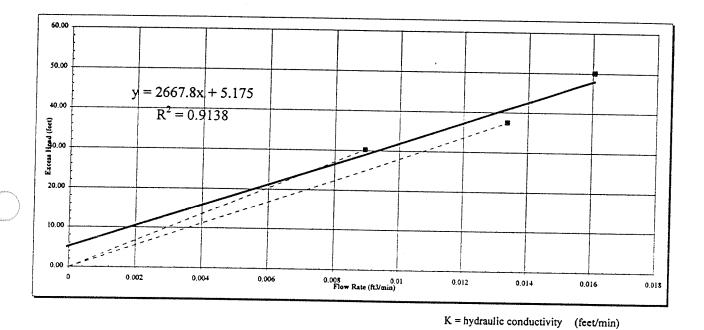

| 0(1.1672-636 |                                                  |                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                           |                             |                         | Average Q                        | (gal/min)       |             |                |          | 000        | 80             | 0.00           | 00.0           | 00.0           | 00.0           | 0.00                 | 800           | 00.00    | 0.00     | 0.0     | 000      | 00'0     | 0.00     | 0.00           | 000          | 0,00         | 0.00     | 00.0     | 0.00         | 0000           |
|--------------|--------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------|-------------------------|----------------------------------|-----------------|-------------|----------------|----------|------------|----------------|----------------|----------------|----------------|----------------|----------------------|---------------|----------|----------|---------|----------|----------|----------|----------------|--------------|--------------|----------|----------|--------------|----------------|
|              |                                                  |                                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                           |                             | 5 Point Moving Averages | Δ time                           | (minutes)       |             |                | :        | 0.0        | 10.0           | 0.0            | 8 00           | <b>10</b> .0   | 00:0           | 0.05                 | 10'0          | 60'0     | 00.0     | 60'0    | 10.07    | -0.03    | -0.07    | -0.02          | 500          | 10.0         | 0.04     | 0.00     | 5.9          | <b>8</b> 9     |
|              |                                                  |                                                                         |                                      | epth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.97<br>49.97                         | 44.91                                     |                             | 5 Point M               | Applied Head                     | (feet of water) |             |                |          | 87,91      | 19.77          | 19.76<br>10.72 | 19.76          | 19.77          | 14.61          | 19.78                | 19.80         | 19.81    | 19.82    | 19.21   | 19.41    | 18.61    | 18,61    | 97.91<br>PC 01 | 08.61        | 18,81        | 18.61    | 18.61    | 19.61        | 09.79<br>19.79 |
|              |                                                  |                                                                         | calculation:                         | Bottom of Interval<br>Vertical Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.00 Above<br>50.00 Below             | Vertical depth of bottom of interval (ft) |                             | 5                       | Average Q                        | (gal/min)       |             |                | 8.0      | 0.00       | 0.00           | 00:00          | 0.0            | 0.00           | 0.0            | 00.0                 | 0.00          | 0.00     | 000      | 00.0    | 0.00     | 00'00    | 0.00     | 0.00           | 00'0         | 00.00        | 00.0     | 0.0      | 000          | 0.00           |
|              |                                                  |                                                                         | True vertical depth calculation:     | Hole depth (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Above<br>Bedow                         | rrtical depta of be                       |                             | 3 Point Moving Averages | A time                           | (suim)          |             | :              | 800      | 20         | 0.00           | 8.9            | 0.0            | 0.00           | 90'0<br>90'0   | 10.0                 | 0.03          | 0.0      | 8.8      | 0.0     | 10:0-    | 01.0     | 0 0<br>0 | 000            | 0.00         | 0.04         | 10.0     | 00.0     | 200          | <b>1</b> 0.0   |
|              |                                                  |                                                                         | ÷                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00<br>19.99                         | 19.57 Ve                                  |                             | 3 Point                 | Applied Head                     | (feet of water) |             |                | 19.75    | 19.78      | 17.61          | 17.61<br>77.61 | 19.76          | 19.76          | 19.78<br>19.78 | 19.79                | 19.79         | 99.61    | 11.0     | 51.61   | 19.83    | 23.61    | 19.79    | 67.61          | 19.80        | 19.80        | 23.61    | 19.62    |              | 19.74          |
|              |                                                  | raddle packer<br>rabole                                                 | h calculatios:                       | Top of interval<br>Vertical Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.00 Above<br>20.00 Below             | Vertical depth of top of interval (ft)    |                             |                         | <u> </u>                         |                 |             | *              |          |            |                |                |                |                |                |                      |               | ÷.       |          |         |          |          |          |                |              |              |          |          |              | 4              |
| $\bigcirc$   |                                                  | Test Type:<br>Cosstant bend, Straddle packer<br>Gauge located dewnabele | True vertical depth calculation:     | Hole depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Above<br>Bckow                         | crtical depth of t                        |                             |                         | Q                                | (um/reg)        |             |                |          |            |                |                |                |                |                |                      | •             |          |          |         |          |          |          |                |              |              |          |          |              |                |
|              |                                                  |                                                                         | F                                    | - 244<br>- 144<br>- 144 | ~ #                                    |                                           |                             |                         | Applied Head                     | (ICCI OI WALCI) | 19.76       | 19.76<br>19.78 | 01.61    | 19.76      | 19.76<br>14.77 | 19.77          | 19.76          | 19.76<br>19.76 | 19.80          | 19.76                | 19.41         | 19.41    | 19.46    |         |          | 08.91    |          |                |              |              | 78.61    |          |              |                |
|              |                                                  |                                                                         | inches                               | feet below top of caning<br>feet below top of caning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | foct                                   | teet below top of curing                  |                             |                         | Measured Head<br>(feet of water) |                 | 0010        | 0.02           | 0.04     | 0000       | 0000<br>1010   | 10.0           | 0.00           | 00'0<br>00'0   | 10.0           | 00,00                | 0.02<br>10.02 | 0.05     | 0.10     | 0.05    | 0.12     | 0.02     | 0.02     | 0.05           | to:0         | <b>CO</b> 10 | 90 G     | 0.06     | 0.05         | 0.02           |
|              | L/CSSA                                           |                                                                         | 3.78                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                           |                             |                         | Elapsed time<br>(minutes)        |                 | 8           | 0.42           | 0.42     | 8+0<br>5+1 | 80             | 0.60           | 90<br>80<br>10 | 0.78           | 0.14           | <b>9</b> 6.0         | 70 1          | 1.20     | 1.26     | 5       | <b>1</b> | 1.62     | 1.68     | 1.80           | 9 <b>1</b> - | 2.04         | 2.10     | 111      | 2.28         | 151            |
|              | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691 | 252<br>12<br>9-Nov-95                                                   |                                      | Top<br>Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                           |                             | 10:52:14                | Elapsed time 1<br>(hours)        |                 | <b>3</b> 00 | 10.0           | 10.0     | 10.0       | 10.0           | 10.0           | 0.01           | 10.0           | 10.0           | 0.02                 | 0.02          | 0:02     | 0.02     | 0.02    | 2010     | 0.03     | 0.03     | 0.03           | 0.0          | £0'0         | 0.04     | 90.04    | <b>M</b> 0.0 | <b>1</b> 0.0   |
| Jooet        | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                    | Borehole diameter<br>Borehole radius | Test section location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Length of test interval<br>Gauge Denth | Static Water Level                        | General Lithology<br>Basalt | Start Time              | Clock<br>Time                    | 11-0-01         | 10.52.18    | 96.52.01       | 10:52:39 | 10.52:43   | 10:52;50       | 10.52.50       | 10.52:54       | 10.53.01       | 10.53,04       | 10:33:12<br>10:33:12 | 10.53.22      | 10.53:26 | 10:53:30 | 0.12.01 | 10:53:48 | 10:53:51 | 10.51.55 | 10.54.02       | 00.4C.01     | 10:54:16     | 10.54:20 | 10:54:27 | 16:45:01     | 10:54:34       |

Golder Associates

25212A CHA, Input Data

| Plot data use   | d in analysis |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 30.22           | 0.067         |
| 37.47           | 0.100         |
| 50.09           | 0.120         |




enter and a second seco

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole252Interval Number12

### Plot data

| (ft <sup>3</sup> /min) |
|------------------------|
| 0.0089                 |
| 0.0134                 |
| 0.0160                 |
|                        |



 $K = 1/(2\pi L) x (Q/h_e) x \ln (L/r)$ 

## Range of hydraulic conductivity

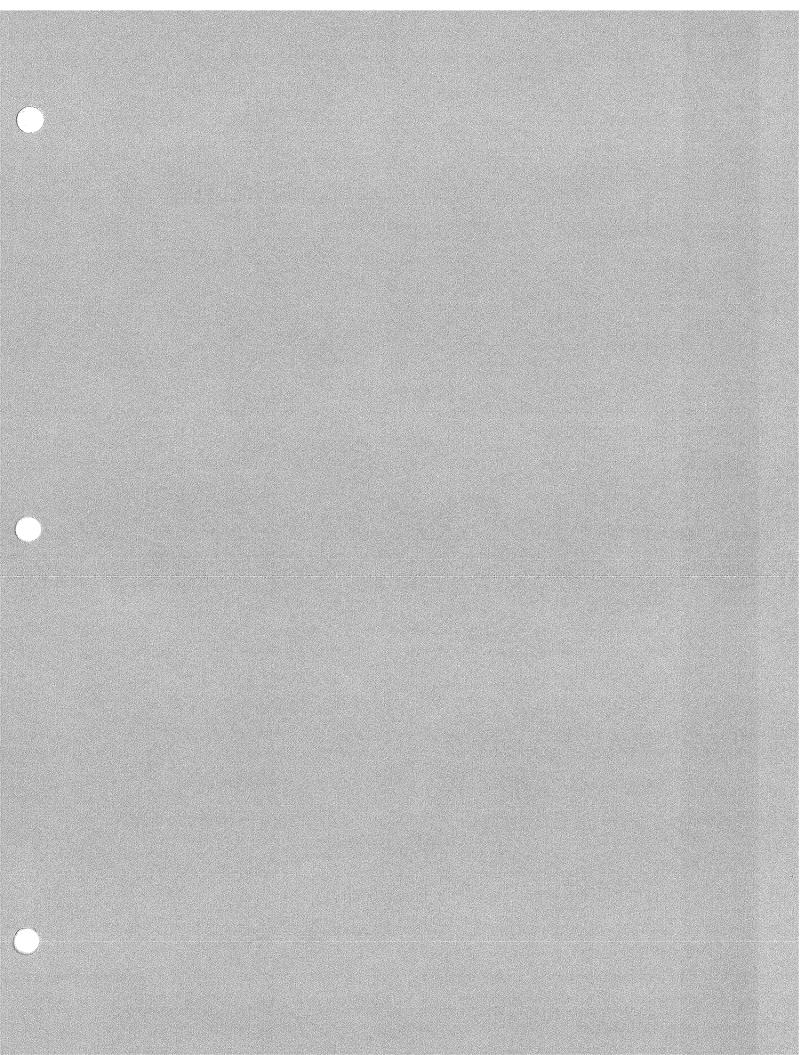
| K = | 4.8E-06 cm/s<br>9.4E-06 feet/min | $Q = 0.009 \text{ ft}^3/\text{min}$<br>$h_e = 30.22 \text{ feet}$ |
|-----|----------------------------------|-------------------------------------------------------------------|
| K = | 5.8E-06 cm/s<br>1.1E-05 feet/min | $Q = 0.013 \text{ ft}^3/\text{min}$<br>$h_e = 37.47 \text{ feet}$ |
| K = | 6.1E-06 cm/s                     | Trendline Slope 2667.80                                           |

1.2E-05 feet/min

Trendline Slope 2667.80

Q = Flow rate

he = Applied head


r = borehole radius

L = length of interval tested (feet)

(ft<sup>3</sup>/min)

(feet)

(feet)



**Packer Testing Results Borehole MF 253** 

()

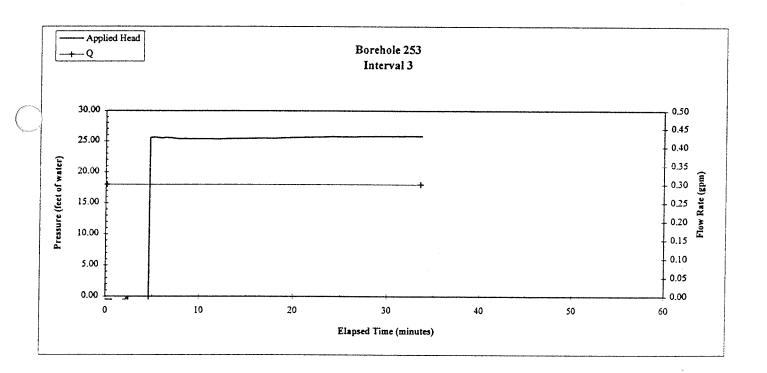
| Interval #    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¥-+         |                |             |           |          |          | and a second | The second se |          |            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------|-----------|----------|----------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------------|
| 111111 7 41 T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALLICIVA    | Interval Deptn |             | Lithology |          |          | Hydraulic Conductivity                                                                                         | Conductiv                                                                                                       | itv      |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Top         | Bott           | ttom        |           |          | factimin |                                                                                                                |                                                                                                                 | - C -    |            |
|               | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                |             |           |          |          |                                                                                                                |                                                                                                                 | cm/sec   |            |
|               | (and the second | (elevation) | (fbtc)         | (elevation) |           | Low      | Highk    | High & Regression                                                                                              | Low                                                                                                             | High     | Regression |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |             |           |          |          |                                                                                                                |                                                                                                                 |          | )          |
| 13 (15)       | 45.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6026.31     | 70.10          | 6001.31     | Sandstone | 1.97E-04 | 2 29E-04 | 2 71F_04                                                                                                       | 1 005-04                                                                                                        | 1165.04  |            |
| 12            | 50.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6021.31     | 74.80          | 5996.61     | Sandstone | 2.92E-04 |          |                                                                                                                | 1 405 04                                                                                                        | 1.105-04 | 1.3/12-04  |
| 10 (14)       | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6001.41     | 95.10          | 16 3056 31  | Candetone | 4 545 04 | 10 200 2 |                                                                                                                | 1.405-04                                                                                                        |          |            |
| 11            | 00 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                |             | ominoine  | +        | 0.035-04 | 8.0915-04                                                                                                      | 2.31E-04                                                                                                        | 3.06E-04 | 4.11E-04   |
|               | 13.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10./660     | 88.90          | 5982.51     | Sandstone | 6.08E-04 |          |                                                                                                                | 3.09E-04                                                                                                        |          |            |
| ۰<br>۲        | 95.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5976.41     | 120.10         | 5951.31     | Sandstone | 9.21E-03 | 101E-02  | 7 078-03                                                                                                       | 1 695 02                                                                                                        | 14E A7   | 1 050 00   |
| 8             | 123.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5948.19     | 147 77         | \$072.60    |           |          |          | C0-71711                                                                                                       | CU-200.F                                                                                                        | 0.14E-U3 | 4.035-03   |
| 2             | 147 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0/ 00/      | 7///           | 60.0760     | oanusione | 3.90E-04 |          |                                                                                                                | 1.98E-04                                                                                                        |          |            |
|               | 71.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.6260     | 172.42         | 5898.99     | Sandstone | 2.29E-04 | 2.66E-04 | 5.17E-04                                                                                                       | 1 17F-04                                                                                                        | 1 355-04 | 1 K3E 04   |
| 0             | 172.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5898.99     | 196.92         | 5874.49     | Sandstone | 4 69F-04 |          |                                                                                                                |                                                                                                                 | 10-700-1 | +n-1017    |
| 5             | 196.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5874.49     | 221.62         | 5849 79     | Sandetone | 10 202 0 | 1 720 01 | 0 0/1 01                                                                                                       | 2.30E-04                                                                                                        |          |            |
| 4             | 221.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5840 70     | 746 17         | 607630      | Allochimo | 4.07E-04 | +0-300-+ | 8.80E-U4                                                                                                       | 1.47E-04                                                                                                        | 2.21E-04 | 4.50E-04   |
| ~             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1.0702     | 71.042         | 67.0280     | Sandstone | 1.37E-03 | 7.49E-04 | 7.15E-04                                                                                                       | 6.94E-04                                                                                                        | 3.81E-04 | 3.63E-04   |
| <u>c</u>      | 240.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.2280     | 270.62         | 5800.79     | Sandstone | 5.08E-05 |          |                                                                                                                | 2 58F-05                                                                                                        |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |             |           |          |          |                                                                                                                | 2222                                                                                                            |          |            |
| 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |             |           |          |          |                                                                                                                |                                                                                                                 |          |            |
|               | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                |             |           |          |          |                                                                                                                |                                                                                                                 |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |             |           |          |          | -                                                                                                              |                                                                                                                 |          |            |

<sup>1</sup> Feet below top of casing.

•

<sup>2</sup> Feet above mean sea level

<sup>3</sup> Regression analysis does not include origin as a point. <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.

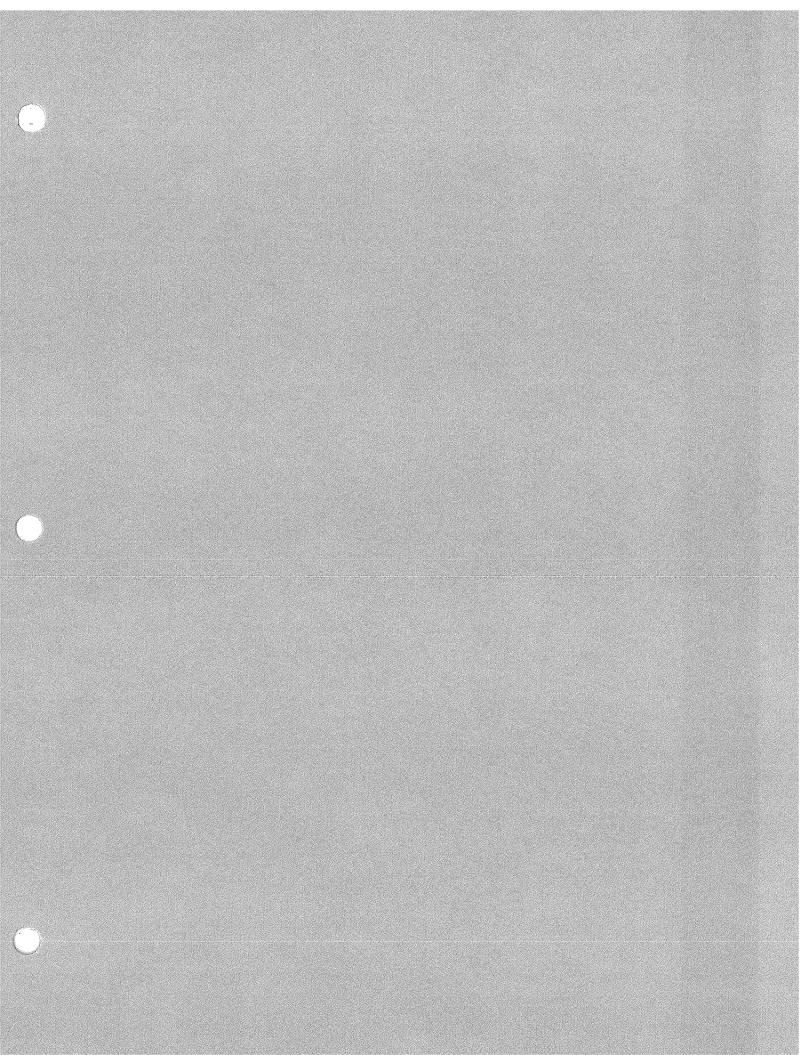

| () Miles                                                                                                                      |                                                  |                                                   |                                                                                                            |                                 |                                                                                                                                                             |                                                                             |                                                                                                                           |                                                                                     |                                                                             |                                 |                               | 943-2791.130           |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|-------------------------------|------------------------|
| Client<br>Site<br>Project No.                                                                                                 | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691 | lerle/CSSA                                        |                                                                                                            |                                 |                                                                                                                                                             |                                                                             |                                                                                                                           |                                                                                     |                                                                             |                                 |                               |                        |
| Borehole<br>Test Number<br>Test Date                                                                                          | 253<br>3<br>21-Oct-95                            |                                                   |                                                                                                            |                                 | Test Type:<br>Coastant head, Straddie packer<br>Gauge located dewnhole                                                                                      | e packer<br>e                                                               |                                                                                                                           |                                                                                     |                                                                             |                                 |                               |                        |
| Borchole diameter<br>Borchole radiua<br>Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level | a Tep<br>Bottoon                                 | 3.78<br>0.16<br>24.50<br>24.50<br>24.50<br>170.64 | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet<br>feet below top of casing |                                 | True vertical depth calculation:<br>Top of laterval<br>Hole depth (M) Verti<br>Above 240,00 Bdow<br>Bdow 2000 Bdow<br>Vertical depth of top of laterval (M) | calculation:<br>Top of laterval<br>Vertical<br>240,00 Above<br>250,00 Below | e: Tra<br>Erval<br>Vertical Depth (11) Hol<br>Above 239,97<br>Below 239,97<br>24,00<br>14 (11) 24,00<br>Vertical Vertical | True vertical depth calculation:<br>Bottom<br>Hele depth (f) 270.00<br>Bedow 270.00 | calculation:<br>Bottom of Interval<br>Vertical Depth (f)<br>270.00 Above 22 | cpita (ft)<br>2.09.56 -         |                               |                        |
| General Lithology<br>Sandstone<br>Start Time                                                                                  | 1631:61                                          |                                                   |                                                                                                            |                                 |                                                                                                                                                             |                                                                             | Poi                                                                                                                       | 3 Point Moving Averages                                                             | versease appending to postone of laterval (ft)<br>of Moving Averages        | 270.58<br>5 Point Ma            | 38<br>5 Point Moving Averages |                        |
| Clock<br>Time                                                                                                                 | Elapsed time<br>(hours)                          | Elapsed time<br>(minutes)                         | Mcasured Head<br>(feet of water)                                                                           | Applied Head<br>(feet of water) | Q<br>(gal/min)                                                                                                                                              | <b>~</b> ::                                                                 | Applied Head<br>(feet of water)                                                                                           | Δ time<br>(mins)                                                                    | Average Q<br>(gal/min)                                                      | Applied Head<br>(feet of water) | Δ time<br>(minutes)           | Average Q<br>(sal/min) |
| 16:91:91<br>14:90:91                                                                                                          | 00.0                                             | 0<br>90,0                                         | <b>3</b><br>9<br>9<br>9                                                                                    | 95 Q<br>95 Q                    |                                                                                                                                                             |                                                                             |                                                                                                                           |                                                                                     |                                                                             |                                 |                               |                        |
| 14:16.3 <b>x</b><br>14:10.42                                                                                                  | 00.0                                             | 0.12<br>0.18                                      | 05.07<br>64-07                                                                                             | 95.0                            | 0.30                                                                                                                                                        |                                                                             | 05.0                                                                                                                      | 0.00                                                                                | 0.10                                                                        |                                 |                               |                        |
| 14,16,45<br>14:16:53                                                                                                          | 0000<br>0010                                     | 0.24<br>0.36                                      | -0.49<br>0.40                                                                                              |                                 |                                                                                                                                                             |                                                                             | -0.49<br>-0.49                                                                                                            | 8.9                                                                                 | 0.10                                                                        | -0.49<br>0.49                   | 10.0                          | 90.00<br>90            |
| 14:16:56<br>14:17:03                                                                                                          | 10'0                                             | 0.42                                              | 0.49                                                                                                       |                                 |                                                                                                                                                             |                                                                             | -0.49<br>-0.49                                                                                                            | 90.0<br>90.0                                                                        | 00.0                                                                        | 0.49<br>0.40                    | 00.0                          | 9.0                    |
| 14:17.07                                                                                                                      | 10.0                                             | 9.0                                               | 87°7                                                                                                       | 67 ()<br>()<br>()               |                                                                                                                                                             |                                                                             | \$<br>9<br>9                                                                                                              | 0.0                                                                                 | 000                                                                         | 9. o                            | 20.0                          | 00.0                   |
| 14:17:14<br>14:17:18                                                                                                          | 10.0                                             | 0.72<br>0.78                                      | -0.51<br>-0.62                                                                                             |                                 |                                                                                                                                                             |                                                                             | 22                                                                                                                        | 114                                                                                 | 0000                                                                        | -0.52<br>-0.55                  | 0.12                          | 00.0<br>00.0           |
| 14:17:21                                                                                                                      | 10:0                                             | 0.84<br>2.0                                       | -0.63                                                                                                      |                                 |                                                                                                                                                             |                                                                             | <b>5</b> 79<br>797                                                                                                        | -0.12<br>-0.05                                                                      | 0000                                                                        | -0.58<br>-0.61                  | 1.0-<br>1.0-                  | 80.0                   |
| 11.132                                                                                                                        | 0.02                                             | 1.02                                              | -0.67<br>-0.73                                                                                             | -0.67<br>-0.73                  |                                                                                                                                                             |                                                                             | 10.0<br>10                                                                                                                | 0.10                                                                                | 0.00                                                                        | <b>8</b> 9'0-                   | 110                           | 0.0                    |
| 14:17:39                                                                                                                      | 0.02<br>0.02                                     | <u> 1</u> 2                                       | -0.77                                                                                                      |                                 |                                                                                                                                                             |                                                                             | 12.1 <del>0</del>                                                                                                         | 0.14<br>19.0-                                                                       | 00.0                                                                        | 57.0-<br>87.0-                  | 81.0-<br>51.0-                | 00.0                   |
| 14.17.47                                                                                                                      | 0.02                                             | 521                                               | -0.82                                                                                                      | -0.81<br>-0.82                  |                                                                                                                                                             |                                                                             | 919                                                                                                                       | 20.0-                                                                               | 0.00                                                                        | 61.0-                           | -0.12                         | 00.0                   |
| 14.17.54                                                                                                                      | 0.02                                             | 5                                                 | 0.85                                                                                                       |                                 |                                                                                                                                                             |                                                                             | 110                                                                                                                       | 5 TO TO                                                                             | 00.0                                                                        | 28.0-<br>53.0-                  | <b>10</b> 10-                 | <b>9</b> 8 0           |
| 14.18.01                                                                                                                      | 60.0                                             | 51                                                | 587 <del>7</del>                                                                                           | 0.83                            |                                                                                                                                                             |                                                                             | -0.84                                                                                                                     | 0.01                                                                                | 0.00                                                                        | -0.84                           | 10.01                         | <b>9</b> 070           |
| 14.13.08                                                                                                                      | [0:0                                             | 1.62                                              | -0.86                                                                                                      |                                 |                                                                                                                                                             |                                                                             | 110-<br>110-                                                                                                              | 10.0                                                                                | 0.00                                                                        | -0.25<br>200                    | 10.0-                         | 00.0                   |
| 14.18.19                                                                                                                      | 0.03<br>U UJ                                     | 1.68                                              | 29<br>29<br>29                                                                                             |                                 |                                                                                                                                                             |                                                                             | -0.77                                                                                                                     | 0.26                                                                                | 000                                                                         | -0.74                           | 570<br>570                    | 00.0                   |
| 14:16:23                                                                                                                      | 0.03                                             | 98.1                                              | <b>1</b> 5 9                                                                                               | 8 F                             |                                                                                                                                                             |                                                                             | 19.0°                                                                                                                     | 0.27                                                                                | 0.00                                                                        | -0.69                           | 0.30                          | 0.00                   |
| 14.18:30                                                                                                                      | 0.03                                             | 36.1                                              | -0.X6                                                                                                      |                                 |                                                                                                                                                             |                                                                             | 8.07<br>28.07                                                                                                             | 0.04<br>10.0                                                                        | 0.00                                                                        | (9. <del>0</del>                | 16.0                          | 0.00                   |
| 16.16.31                                                                                                                      | 100<br>1100                                      | 2.04                                              |                                                                                                            | -0.55                           |                                                                                                                                                             |                                                                             | -0.55                                                                                                                     | 0.02                                                                                | 00'0                                                                        | 8 5 9                           | 000                           | 000                    |
| 14118-44                                                                                                                      | 100                                              | 17                                                | 45.0-<br>15.0-                                                                                             | 7, q                            |                                                                                                                                                             |                                                                             | -0.54                                                                                                                     | 0.02                                                                                | 0,00                                                                        | 0.45                            | 0.48                          | 800                    |
| 14:12,48                                                                                                                      | 0.04                                             | 2.28                                              | 90.0-                                                                                                      |                                 |                                                                                                                                                             |                                                                             | 80.0-<br>11.0-                                                                                                            | 0.66                                                                                | 0.00                                                                        | (('0-                           | 0.58                          | 0.00                   |
| 14.18.55                                                                                                                      | 100                                              | 2.4                                               | <b>P</b> 0'0                                                                                               | 0.04                            |                                                                                                                                                             |                                                                             | -0.28                                                                                                                     | 8.9                                                                                 | 0.60                                                                        | 1C.0-                           | 11.0                          | 0.00                   |
|                                                                                                                               |                                                  |                                                   |                                                                                                            |                                 |                                                                                                                                                             |                                                                             | 1<br>-                                                                                                                    | ;                                                                                   | }                                                                           | 19.04                           | 51.9                          | 0.0                    |

Golder Associates

25303A CHA, lapat Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 25.80           | 0.300            |

,

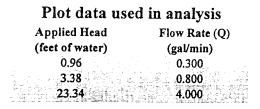



()

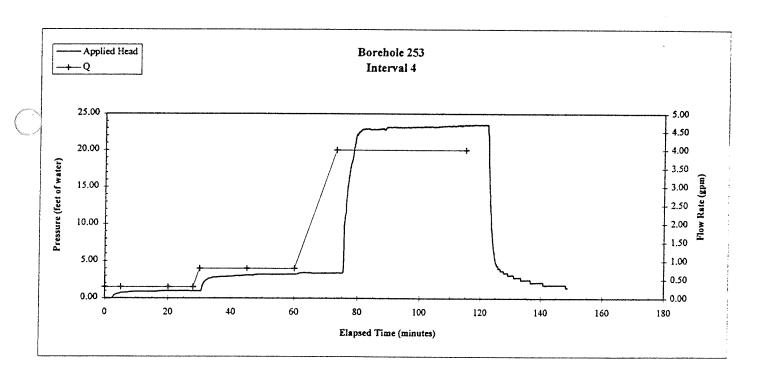
| Client          | Morrison- | Maierle/CSSA             |                    |                     |
|-----------------|-----------|--------------------------|--------------------|---------------------|
| Site            | Miner Fla | t                        |                    |                     |
| Project No.     | 943-27691 |                          |                    |                     |
| Borehole        | 253       |                          |                    |                     |
| Interval Number | 3         |                          |                    |                     |
|                 | Plot data |                          |                    |                     |
|                 |           | Applied Head             | Flow Rate (Q)      | Flow Rate (Q)       |
|                 |           | (feet of water)<br>25.80 | (gal/min)<br>0.300 | (ft3/min)<br>0.0401 |
|                 |           |                          |                    |                     |

| K = 1/(2     | pL) x (Q/he) x in (L/r) | K = hydraulic conductivity    | (feet/min) |
|--------------|-------------------------|-------------------------------|------------|
|              |                         | Q = Flow rate                 | (ft3/min)  |
|              |                         | he = Applied head             | (feet)     |
|              |                         | L = length of interval tested | (feet)     |
|              |                         | r = borehole radius           | (feet)     |
| Range of hyd | raulic conductivity     |                               |            |
| K =          | 2.6E-05 cm/s            | Q = 0.040 ft3/m               | nin        |
|              | 5.1E-05 feet/min        | he = 25.80 feet               |            |

25303A.CHA, K calculation




| 0(1.1072-614 |                                                                                            |                                                                                                                                                                                                   | Average Q                           | (1111111)             | 80                 | 00.0<br>00.0       | 00.0<br>00.0       | 0.00               | 0.00<br>00.00              | 8.9                | 000            | 0.00<br>00.0               | 00.0               | 00'0           | 00.0            | 00'0       | 08.0                | 0.00           | 0,00             | 000               | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|----------------------------|--------------------|----------------|----------------------------|--------------------|----------------|-----------------|------------|---------------------|----------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                            | s<br>S<br>Solite Molecular                                                                                                                                                                        | orung Averag<br>Δ time<br>(minuter) | (5)101                | 00.0<br>0          | 0 00 00            | 00.0               | 00'0<br>00'0       | 0000                       | 00.0               | 8              | 00.0<br>00.0               | 00 0<br>00 0       | 00.0           | 00.0            | 00.0       | 0.00                | 10.0-          | 0.01             | 0.05              | 117.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                            | ରୁ କୁ ଏ                                                                                                                                                                                           | Applied Head<br>(feet of water)     |                       | 20:0-              | 10.0-              | -0.02              | -0.02<br>-0.02     | -0.02<br>-0.02             | -0.02<br>-0.02     | -0.02          | (n) <del>n</del>           | 60.0-<br>10.0-     | -0.0-<br>0.02  | 0.0             | 0.0        | 60 <del>0</del>     | £0.0-          | (0 <sup>.0</sup> | -0.02<br>0.00     | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                                            | True vertical depth calculation:<br>Bottom of laterval<br>Hole depth (ft) Vertical Depth (ft)<br>Above 14000 Above 121<br>Below 1230,00 Below 121<br>Vertical depth of bottom of laterval (ft) 24 | Average Q<br>(gal/min)              |                       | 00.0<br>00.0       | 00.0               | 0000               | 0.00               | 0.00                       | 8.0<br>8.0         | 0.0            | 0.00                       | 00'0               | 0.00           | 0000            | 0.0        | 00.0                | 00.00          | 00'0             | 0.00              | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                            | Tree vertical depth calculation:<br>Bottom<br>Hede depth (ft)<br>Above 230.00<br>Peddor<br>Vertical depth of bottom of inte                                                                       | Δ time<br>(mins)                    |                       | 8<br>9<br>9        | 8.8<br>8.0         | 8 8 3              |                    | 0.00                       | 8.8                | 00.0<br>00     | 800                        | 000                | 00.0           | 0.0             | 80         | 0.0                 | 0.00           | 10'0-            | 0.05              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                            | at: T.<br>Erval<br>Vertical Depth (f) H.<br>Above 21997<br>Bolow 21997<br>v(f) 221.59 V.                                                                                                          | Applied Head<br>(feet of water)     |                       | -0.02<br>-0.02     | -0.02<br>-0.02     | 100<br>000         | 100                | 10.0-                      | -0.02<br>-0.02     | -0.01<br>20.02 | <b>1</b> 0 0               | (0) <del>0</del> - | (0)9<br>(0)9   | 60.03           | 6.9<br>619 | 0.0                 | £0.0-          | 600<br>800       | 10.0              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | traddie packer<br>wakole                                                                   | True vertical depith calculation:<br>Top of laterval<br>Hole depth (ft) Top of laterval<br>Above 220.00 Bolow<br>Bibow 230.00 Bolow<br>Vertical depth of top of laterval (ft)                     |                                     |                       |                    |                    |                    |                    | 1.<br>4 <sup>1</sup> · · · |                    |                |                            |                    |                |                 |            |                     |                |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Teit Type:<br>Constant houd, Straddie packer<br>Gauge located downhole                     | True vertical depits calculation:<br>Hole depits (ft) Top of latery V<br>Above 220.00 A<br>Bubow 220.00 B<br>Vertical depits of top of laterval                                                   | Q<br>(gaVmin)                       | 0.30                  |                    |                    |                    |                    |                            |                    |                |                            |                    |                |                 |            |                     |                |                  |                   | 20 (1)<br>1995<br>- 1997<br>- 19 |
|              | F G G                                                                                      |                                                                                                                                                                                                   | Applied Head<br>(feet of water)     | -0.02<br>-0.02        | -0.02<br>-0.02     | 70 0<br>9 0<br>9   |                    |                    |                            |                    | -0.03<br>-0.02 | 0.0-<br>0.0-               |                    | -0.02<br>-0.03 | 0 O             |            |                     | 609<br>609     | (0) <del>0</del> | 0.02              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                            | luches<br>foct<br>foct<br>foct below top of casing<br>foct below top of casing<br>foct below top of casing<br>foct below top of casing                                                            | Measured Head<br>(feet of water)    | 10.0-                 | -0.02<br>-0.02     | 0.02               | -0.02<br>-0.02     | -0.01<br>2010-     | 0.02                       | 0.02               | -0.07          | 60.0 <del>.</del><br>20.0- | 0.03               | 70°0-          | 60 <del>0</del> | £0'0-      | E0.0-               | 10'0-<br>10'1- | £0.0-            | 50.0 <del>1</del> | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                            | 9.78<br>0.16<br>24.6.12<br>24.50<br>1.80.00<br>1.74.75                                                                                                                                            | Elapsed time<br>(minutes)           | 0<br>90'0             | 0.11<br>0.12       | 0.36<br>0.42       | 0.54<br>0.6        | 0.72<br>0.78       | 11.0                       | 1.02               | 1.2            | 1.26<br>1.32               | <b>7</b> 3         | 51             | 1.64            | 1.36       | 1.98                | 51             | 111              | 2.28              | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>253<br>253<br>253<br>23-0ct-95         | Tap<br>Boltom<br>B:16:06                                                                                                                                                                          | Elapsed time<br>(hours)             | 00.0                  | 0000<br>1010       | 10.0<br>10.0       | 10.0               | 10.0               | 0.01<br>0.02               | 0.02               | 0.02           | 0.02                       | 0.02               | 0 0            | 0.03            | £0:0       | 0.03                | <b>10</b> .0   | 0.04             | 10.0              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Const        | Client<br>Site<br>Project No.<br>Borehole<br>Test Number<br>Test Date<br>Borehole diameter | Boochoic radius<br>Test section location<br>Length of test laterval<br>Gauge Depth<br>Staule Water Level<br>General Lithology<br>Standutone<br>Start Time                                         | Clock<br>Time                       | 8: 16:06<br>8: 16: 10 | 1.16.17<br>1.16.24 | 8.16/28<br>8.16/31 | 8:16:38<br>8:16:42 | 8.16.53<br>8:16.53 | 8:16.56<br>8:17:04         | 8:17:07<br>8:17-11 | 811718         | 81722<br>81725             | 8:17:32<br>8:17:40 | 01210          | 11734           | 11735      | 8. 18.05<br>8.14.05 | 8.16.12        | 6: 1 m - 1 o     | 6.18.2)<br>       | 1997 - 1997 - 19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

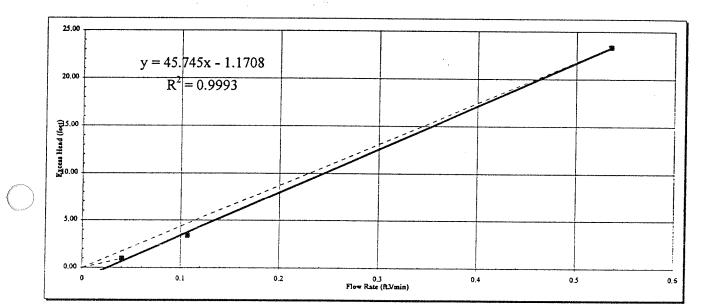

**Oolder Associates** 

.

25304A CHA, luput Data



÷




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

| Borchole        | 253 |
|-----------------|-----|
| Interval Number | 4   |

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 0.96            | 0.300         | 0.0401                 |
| 3.38            | 0.800         | 0.1070                 |
| 23.34           | 4.000         | 0.5348                 |
|                 |               |                        |



K = hydraulic conductivity (feet/min)

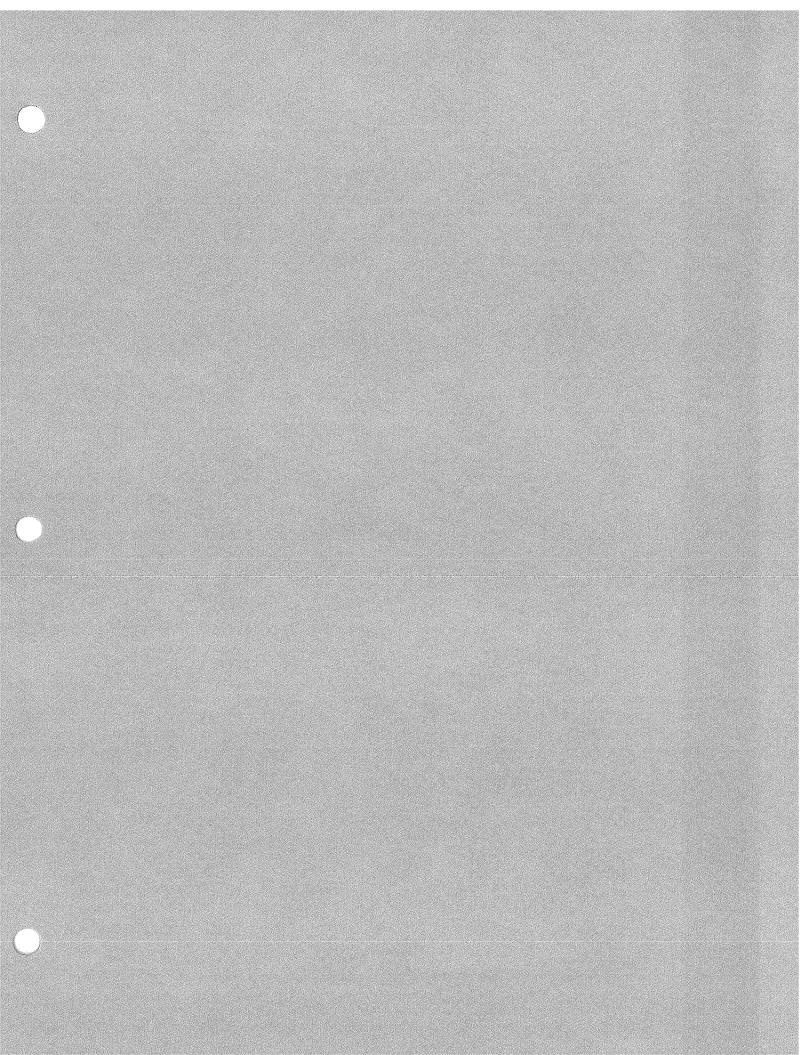
L = length of interval tested (feet)

(ft<sup>3</sup>/min)

(feet)

(feet)

Q = Flow rate


he = Applied head

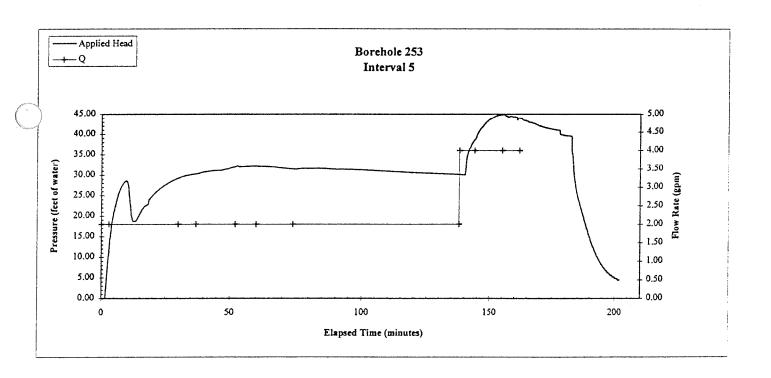
r = borehole radius

 $K = 1/(2\pi L) \ge (Q/h_e) \ge \ln (L/r)$ 

## Range of hydraulic conductivity

| K = | 6.9E-04 cm/s                            | Q =              | 0.040 | ft <sup>3</sup> /min |
|-----|-----------------------------------------|------------------|-------|----------------------|
|     | 1.4E-03 feet/min                        | h <sub>e</sub> = | 0.96  | feet                 |
| K = | <b>3.8E-04 cm/s</b>                     | Q =              | 0.535 | ft <sup>3</sup> /min |
|     | 7.5E-04 feet/min                        | h <sub>e</sub> = | 23.34 | feet                 |
| K = | <b>3.6E-04 cm/s</b><br>7.2E-04 feet/min | Trendline Slope  | 45.75 |                      |




| <b>61.1%1.1%</b> |                                                  |                                                                        |                                      |                                                              |                                                                     |                                           | crages                  | e Average Q                      | cs) (galmu) |          |          | 0.00                 | 00.00    | 0.00     | 0:00 | 3.9     | 00.0     | 0.00                 | 900<br>800   | 0.00     | 00'00    | 00.0     | 00.0        | 00 0         | 000                  | 00.0     | 0.00     | 000          | <b>9</b> 8.9 | 0000         | 000      | 000  |
|------------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------|-------------|----------|----------|----------------------|----------|----------|------|---------|----------|----------------------|--------------|----------|----------|----------|-------------|--------------|----------------------|----------|----------|--------------|--------------|--------------|----------|------|
| Norman Pr        |                                                  |                                                                        |                                      |                                                              |                                                                     |                                           | 5 Point Moving Averages | Δ time                           | (minutes)   |          |          | 00 0                 | 00.9     | 0.00     | 0.0  | 8.0     | 00'0     | 0.0                  | 10.0         | 0.01     | 10.0     | 0.00     | 0.92        | 1            | 11.7<br>11.1         | 5        | 12.4     | 3.6          | 3.60         | 9-1<br>      | 1        | 212  |
|                  |                                                  |                                                                        |                                      | երլե (Ո)                                                     | 219.97                                                              | 221.59                                    | 5 Point N               | Applied Head                     |             |          |          | 10.0                 | 10.0     | 10.0     | 10.0 | 10.0    | 10.0     | 10.0                 | 10.0         | 10'0     | 0.02     | 0.02     | 07:0        | 0.57         | 1                    | 2.89     | 3.92     | 4.83         | 5.64         | 6.79         | ar       | 67.1 |
|                  |                                                  |                                                                        | lculation:                           | 5                                                            | 230.00 Above<br>230.00 Below                                        | om of interval (ft)                       |                         | Average Q<br>(eat/min)           |             |          | 0.00     | 200                  | 0.0      | 0.00     | 0.00 | 0.00    | 0.00     | 000                  | 0.00         | 00'0     | 00.0     | 0.00     | 0.00        | 00.0         | 0.0                  | 0.00     | 0.00     | 00.0         | 00.0         | 0.00         | 0.00     | 0.00 |
|                  |                                                  |                                                                        | True vertical depth calculation:     | Hole depth (ft)                                              | Allow                                                               | Vertical depth of bottom of interval (ft) | 3 Point Moving Averages | A time A<br>(mins)               |             |          | 0,00     | 9<br>9<br>9          | 0.00     | 8.9      | 80.0 | 0:00    |          | 000                  | 0.00         | 10.0     | 100      | 90.0     | 0.00        | 0.92<br>1 AA | Ξ                    | 1.34     | 2.97     | 1.17         | 67.0<br>(1.0 | 0.77         | 0.72     | 1.07 |
|                  |                                                  |                                                                        | £                                    | al Depth (f)                                                 | 199.97                                                              | 196.89                                    |                         | Applied Head<br>(feet of water)  |             |          | 10:0     | 10.0                 | 0.01     | 10.0     | 10.0 | 0.01    | 10.0     | 10.0                 | 10.0         | 0.01     | 10.0     | 0.02     | 0.02        | 1.0          | 1.15                 | 2.60     | 611      | 4.79<br>6.07 | 6.42         | 6.79         | 7.16     | 7.65 |
| $\bigcirc$       |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | True vertical depth calculation:     | Top of lau<br>lepth (ft)                                     |                                                                     | דניוננו ובקנה פו ופף פו ותנודעון (וו)     |                         | Q<br>(gal/min)                   | 2.00        |          |          |                      | -        |          |      |         |          |                      |              |          |          |          |             | -            |                      |          |          |              |              |              |          |      |
|                  |                                                  | Tei<br>Gan                                                             | Ĩru                                  | Hole d                                                       | Bedow                                                               | 5                                         |                         | Applied Head<br>(feet of water)  | 10.0        | 10.0     | 10.0     |                      |          | 100      |      | 10.0    |          |                      | 0.0          | 0.02     | 0.02     | 0.02     | 0.02        | 14.0         |                      | 2,75     | 97.5     | 6.07         | 6.41         |              |          | 7.51 |
|                  |                                                  |                                                                        | inches                               | reet<br>feet below top of casing<br>feet below top of casing | feet<br>feet below top of <b>cusing</b><br>feet below top of cusing |                                           |                         | Measured Head<br>(feet of water) | 0.01        | 0.01     | 10.0     | 10.0                 | 10.0     | 10:0     | 10:0 | 10.0    | 10:0     | 10.0                 | 10:0<br>10:0 | 0.02     | 10.0     | t0:0     | 0.0<br>0.02 | 16.0         | 1.86                 | 2.75     | 5.72     | 6.07         | 6.41         | 6.79         | 11       | 16.7 |
|                  | erle/CSSA                                        |                                                                        | 3.78                                 | 0.10<br>196,92<br>221.62                                     | 24.70<br>177.00<br>174.75                                           |                                           |                         | Elapsed time<br>(minutes)        | ٥           | 90:0     | 10       | 0.54                 | 90<br>90 | 9.0      | 0.66 | 0.78    | 0.64     | 8.0                  | 1.06         | 1.2      | 1.26     | 8C 1     | 8           | 1.62         | 1.61                 | 9 T      | 2.16     | 2.22         | 112          | 121          |          | 5    |
|                  | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 253<br>5<br>22-Oct-95                                                  |                                      | Top<br>Bollom                                                |                                                                     |                                           | 11:47.51                | Elapsed time<br>(hours)          | 00.0        | 0.00     | 0.0      | 10.0                 | 100      | 10'0     | 10'0 | 10'0    | 10.0     | 0.02                 | 7010         | 0.02     | 0.02     | 0.02     | 10 0        | 0.03         | 0.0                  | 0.0      | 0.04     | <b>1</b> 0.0 | <b>1</b> 0.0 | <b>1</b> 0.0 | 5 8      | ſ    |
| 113MX            | Client M<br>Site M<br>Project No. 9              | Borcholc 2<br>Test Number 5<br>Test Date 2:                            | Borchole diameter<br>Borchole radius | Test section location                                        | Leagth of test interval<br>Gauge Depth<br>Static Water Level        | General Lithology                         | Start Time              | Clock F<br>Time                  | 19261       | 11:47:55 | 11.48.02 | 14.48.23<br>14.48.23 | 11.44.27 | 11:48:27 |      | 1148.38 | 10.44.41 | 18.48.49<br>11.14.43 | 1141156      | 11:49.03 | 11.49.07 | 11:49:17 | 11:49.25    | 11.49 28     | 20'49'11<br>60'69'11 | EP-69-EF | 10:00:11 | 11.30.04     | H000011      | 11.06.11     | 11:00:11 |      |

23305A CHA, Input Duta

**Goldor Associatos** 

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)30.102.00039.904.000

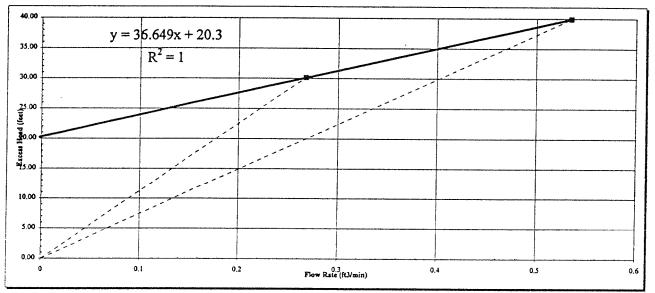
•,



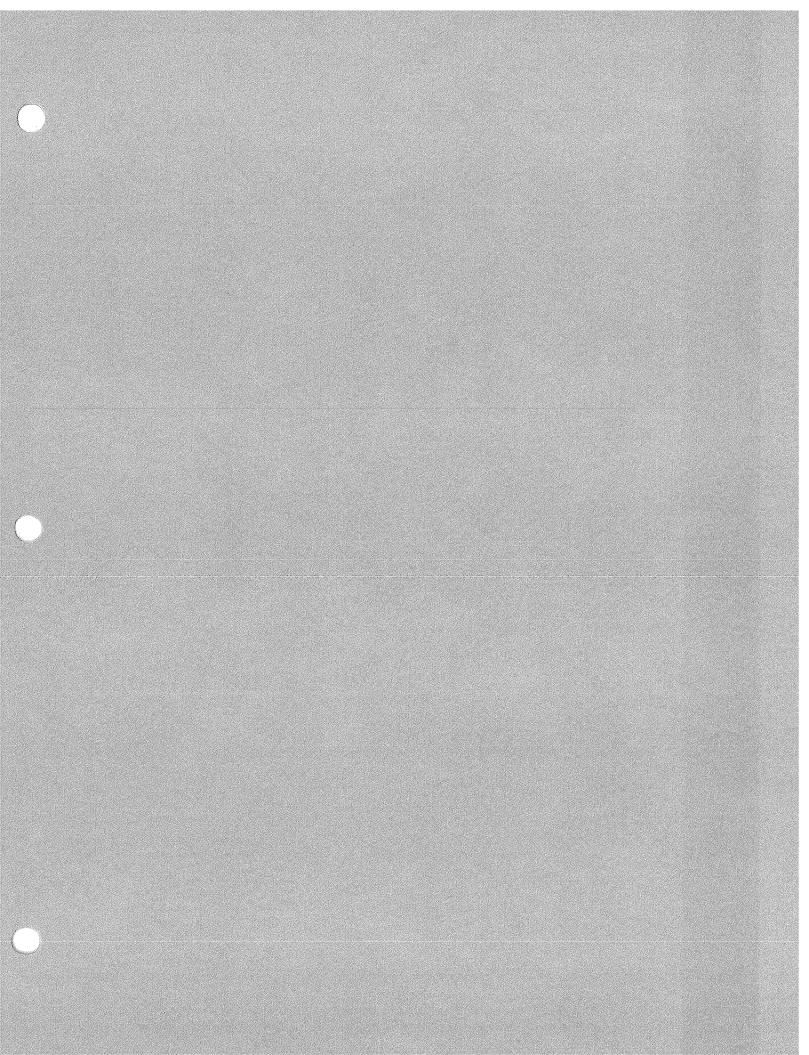
| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borchole 253 Interval Number

Plot data


5

Applied Head (feet of water) 30.10 39.90

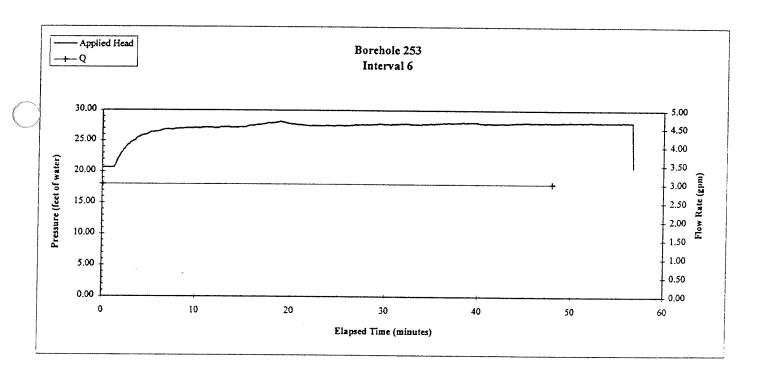

Flow Rate (Q) Flow Rate (Q) (ft<sup>3</sup>/min) 0.2674 0.5348 (gal/min)



2.000 4.000



| K = 1/(2   | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r)   | K = hydr $Q = Flow$ $he = App$ $L = lengt$ $r = boreh$ | rate<br>lied head<br>h of inter | val tested                   | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|-----------------------------------------|--------------------------------------------------------|---------------------------------|------------------------------|--------------------------------------------------------------------|
| Range of h | ydraulic conductivity                   |                                                        |                                 |                              |                                                                    |
| K =        | 1.5E-04 cm/s<br>2.9E-04 feet/min        | Q =<br>h <sub>e</sub> =                                | 0.267<br>30.10                  | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | <b>2.2E-04 cm/s</b><br>4.4E-04 feet/min | Q =<br>h <sub>e</sub> =                                | 0.535<br>39.90                  | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | <b>4.5E-04 cm/s</b><br>8.9E-04 feet/min | Trendline Slope                                        | 36.65                           |                              |                                                                    |

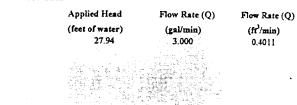


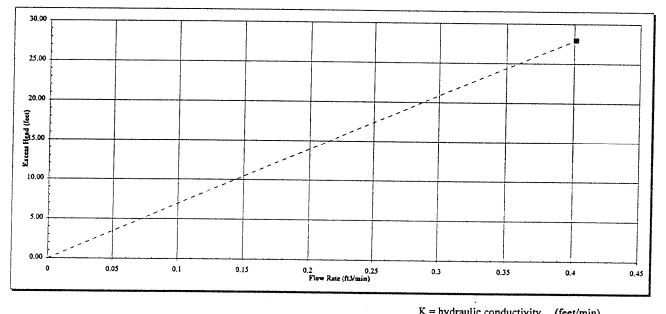

| 0(1.1675-614 |                                                  |                                                                        |                                      |                                           |                                        |                                           |                                              | 8                       | Average Q<br>(gal/min)           |          |             |          | 0.60                 | <b>9</b> 00    | 0.00     | 8.9                  | 800            | 00.0     | 0.00       | 90 00<br>00 00 | 0.00     | 00.0     | 00.0     | 800      | 00.0           | 0000           | 0.00         | 000      | 0.00             | 0.00     | 000            | 0:0     | 000           |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------|----------------------------------|----------|-------------|----------|----------------------|----------------|----------|----------------------|----------------|----------|------------|----------------|----------|----------|----------|----------|----------------|----------------|--------------|----------|------------------|----------|----------------|---------|---------------|
| ()           |                                                  |                                                                        |                                      |                                           |                                        |                                           |                                              | 5 Point Moving Averages | ∆ time<br>(minutes)              |          |             |          | 0.0                  | 10.0           | 0.01     | 0.02                 | 10:0-          | 00.00    | 0.02       | 10.0           | 0 24     | 0.52     | 1 47     | 121      | 1.17           | 0.87           | 52.0         | 0.78     | 0.70             | 0.26     | 8C.0           | 750     | 9.3E          |
|              |                                                  |                                                                        |                                      | еріћ (fi)                                 | 79,981<br>79,991                       | 196.89                                    |                                              | 5 Point M               | Applied Head<br>(feet of water)  |          |             |          | 20.65<br>20.65       | 30.66          | 20.65    | 20.65                | 10.64          | 20.64    | 20.64      | 20.65          | 20.70    | 18.02    | 21.25    | 21.60    | 21.89          | 22.14          | 11.60        | 11.11    | 27-22            | 23,06    | 23.16<br>27 75 |         | 141           |
|              |                                                  |                                                                        | a calculation:                       | Bottom of interval<br>Vertical Depth (ft) | 190.00 Above<br>200.00 Below           | Vertical depth of bottom of interval (ft) |                                              | 53                      | Average Q<br>(gal/min)           |          |             | 1.00     | 00.0                 | 0.00           | 00.0     | 0.00                 | 0.00           | 0.00     | 00.00      | 0.00           | 0.00     | 000      | 00.0     | 0.00     | 0.00           | 00.00<br>00.00 | 0.00         | 0.00     | 0.00             | 0.0      | 00.0           | 0.00    | 0.0           |
|              |                                                  |                                                                        | True vertical deptà calculation:     | Hole depth (A)                            | Above<br>Below                         | ertical depth of b                        |                                              | 3 Point Moving Averages | A time<br>(mina)                 |          |             | 8.9      | 0.0                  | 0.00           | 80       | 10.0-                |                | 10.0     | 10.0       | 10.0           | 0.0      | 550      | 0.65     | 66.0     | 0.72           | 110            | 1910         | 9<br>9   | 0.17             | 8        | 2              | 11      | 0.19          |
|              |                                                  |                                                                        | ŗ                                    |                                           | 179,56                                 | 171.40 V.                                 |                                              | 3 Point                 | Applied Head<br>(feet of water)  |          |             | 20.65    | 20.02                | 30.66          | 20.66    | 20.65                | 20.64          | 20.62    | 20.65      | 20.65          | 20.66    | 16.02    | 21.20    | 21.61    | 21.96<br>21.96 | 1 a            | 22.57        | e7.22    | 10,11            | B0717    |                | 10.62   | 23.45         |
| Ċ            |                                                  | traddie patker<br>wnhole                                               | ta calculation:                      | Top of interval<br>Vertical Depth (ft)    | 170.00 Above<br>180.00 Below           | Vertical depta of top of laterval (ft)    |                                              |                         | < 5                              | 1.45 m   |             |          |                      |                |          |                      | - 17 - I       |          | . •        |                |          |          |          |          |                |                |              |          |                  |          |                |         |               |
|              |                                                  | Tett Type:<br>Censtant head, Straddle pacher<br>Gauge localed dewnhole | True vertical deptà calculation:     | Hole depth (ft)                           | Above<br>Below                         | /ertical depth of                         |                                              |                         | Q<br>(gal/min)                   |          | 3.8         |          |                      |                |          |                      |                |          |            |                |          |          |          |          |                |                |              |          | 28<br>1 - 1<br>1 | ·        |                |         |               |
|              |                                                  |                                                                        | F                                    | 1                                         |                                        | -                                         |                                              |                         | Applied Head<br>(feet of water)  | 20.65    | 20.65       | 20,65    |                      | 20.65<br>70.65 |          |                      | 20.63          |          |            |                | 20.02    | 20.89    | 21.17    | 21.54    | 21.26          | 22.34          | 22.41        | 22.95    | 21.12            | ПR       | 12.62          | 36.62   | 23.44         |
|              |                                                  |                                                                        | inches                               | feet below top of casing                  | feet<br>feet below top of casing       | feet below top of casing                  |                                              |                         | Measured Head<br>(feet of water) | 0.02     | 10:0-       | 0.02     | -0.02                | 10 (P          | 10'0-    | -0.02                | 10.0-<br>10.0- | 10 O     | [0]0-      | 10.14<br>10.10 | 10.0-    | 0.22     | 0.50     | 48°0     | 671            | 1.67           | 174          | 1 3      | 3                | 1.4      | 124            | 2.69    | <i>1</i> 1.1  |
|              | e/CSSA                                           |                                                                        | 3.78                                 | 0.10<br>172.42<br>106.02                  | 24.50<br>164.00                        | 173.20                                    |                                              |                         | Elapsed time<br>(minutes)        | 0        | 90'0<br>1 0 | 0.18     | <b>1</b>             | 0.62           | 0.54     | 9.6                  | 0.78<br>U.78   | 911.0    | <b>6.9</b> | 1.14           | 1        | 1.26     | 5        | 1 29     | 1.68           | 174            | 1.74         | 191      | 2.04             | 2.04     | 2.1            | 2.16    | 2.16          |
|              | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691 | 253<br>6<br>21-0ct-95                                                  |                                      | Top<br>Holion                             |                                        |                                           | 80-80-91                                     | 00.07.01                | Elapsed time  <br>(hours)        | 0.00     | 0.00        | 0.00     | 10:0                 | 10.0           | 0.01     | 10.0                 | 100            | 10.0     | 0.02       | 0.02           | 0.02     | 0.02     | 0.02     | £0'0     | £0:0           | 0.03           | 0.03<br>0.03 | 6.03     | 0.03             | 0.03     | 10.0           | 10.0    | <b>1</b> 0.04 |
| C monocu     | Client<br>Site<br>Project No.                    | Borehole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius | Test section location                     | Length of test interval<br>Gauge Depth | Static Water Level                        | General Lithology<br>Sandstone<br>Start Time |                         | Clock<br>Time                    | 16:28:08 | 10.28.12    | 16.28.19 | 16.28:26<br>16.74:30 | EE:02:91       | 16.21.40 | 16:28;44<br>14:37 41 | 16:21:55       | 16/24.58 | 16:29.06   | 16.29.16       | 16:29:20 | 16.29.24 | 16.29.51 | 16.29.45 | 16:29 49       | 16.29.32       | 10.00.01     | 16:30.07 | 16:30:10         | 16.30,10 | 16:30:14       | 1000001 | 81° AC 110    |

**Golder Associates** 

25306A CHA, Input Data

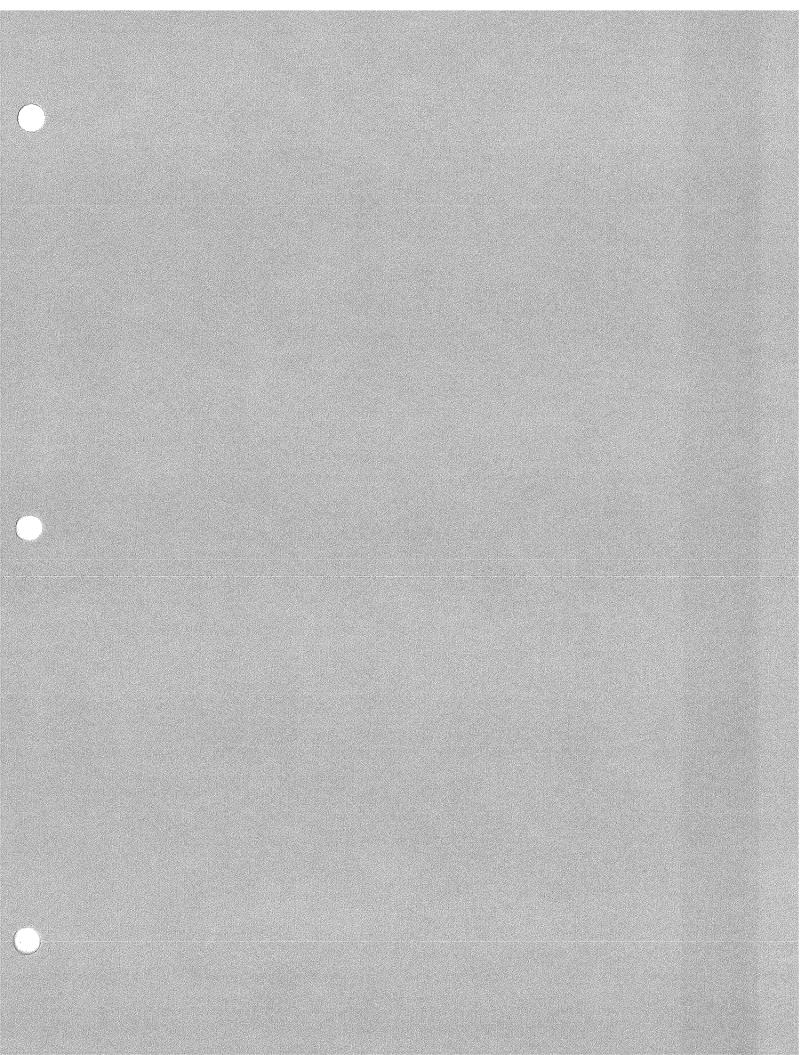
## Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)27.943.000





| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 253                   |

Interval Number

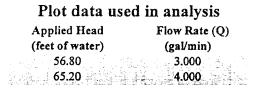
## Plot data


6

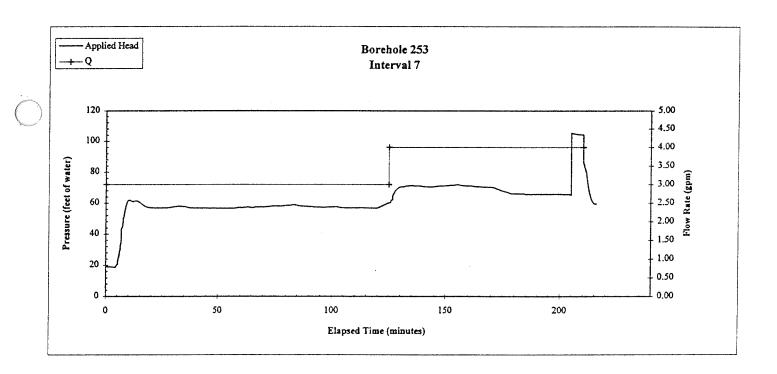




| $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ | R = ny  arabic conductivity $Q = Flow  rate$ $he = Applied  head$ $L =  length of interval tested$ $r =  borehole radius$ | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Range of hydraulic conductivity                  |                                                                                                                           |                                                                    |


| K = | 2.4E-04 cm/s     | Q =              | 0.401 | ft <sup>3</sup> /min |
|-----|------------------|------------------|-------|----------------------|
|     | 4.7E-04 feet/min | h <sub>e</sub> = | 27.94 | feet                 |




| 01116/2-EP6 |                                                                                   | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                 | Average Q<br>(gal/min)                  | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                   | se<br>26<br>40<br>5 Point Moving Averages                                                                                                                                                                                                                        | ∆ time<br>(minutes)                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                   | 5 2 2                                                                                                                                                                                                                                                            | Applied Head<br>(feet of water)         | 19.02<br>19.02<br>19.02<br>19.02<br>19.02<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03<br>19.03 |
|             |                                                                                   | alculation:<br>Bottom of laterval<br>Vertical Depth (n)<br>170.00 Above<br>180.00 Bolow<br>1<br>am of laterval (n)<br>1                                                                                                                                          | Average Q<br>(gal/min)                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                   | Tree vertical depth calculation:         Bottom of later         Bottom of later         Bottom of later         Bottom of later         Vertical depth of bottom of laterval (n)         Vertical depth of bottom of laterval (n)         Point Moving Averages | Δ time<br>(mias)                        | 800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                   | Polt                                                                                                                                                                                                                                                             | Applied Head<br>(feet of water)         | 19 00<br>19 00<br>19 00<br>19 00<br>19 00<br>19 00<br>19 00<br>19 00<br>18 28<br>18 28<br>18 29<br>18 28<br>18 29<br>18 28<br>18 29<br>18 29<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                      |
|             | rad die pacher<br>rakole                                                          | True vertical depth calculation:<br>Top of laterval<br>Hole depth (ft) Vertical Depth (ft)<br>Above 139,98<br>Below 140,00 Below 149,96<br>Below 140,00 Below 149,50<br>Vertical depth of top of laterval (ft) 147,50                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\bigcirc$  | Tei Type:<br>Constant head, Stradda packer<br>Gauge located downhole              | True vertical depits calculation:<br>Top of latern<br>Whee depits (n) V<br>Above 140.00 A<br>Béow 130.00 B<br>Vertical depits of top of laternal                                                                                                                 | Q<br>(gal/min)                          | 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 5 0 1                                                                             | True<br>Hake<br>Above<br>Below                                                                                                                                                                                                                                   | Applied Head<br>(feet of water)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -           |                                                                                   | inchea<br>feet<br>feet below top of casing<br>feet<br>feet<br>beat<br>feet below top of casing<br>feet below top of casing                                                                                                                                       | Measured Head<br>(feet of water)<br>404 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | UCSSA                                                                             | 3.78<br>0.16<br>147.72<br>172.42<br>24.70<br>141.00<br>174.95                                                                                                                                                                                                    | Elapsed time<br>(minutes)<br>o          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Morrison-Malerie/CSSA<br>Miner Flat<br>943-27691<br>253<br>7<br>253<br>253<br>253 | Tep<br>Bottom<br>8:22:58                                                                                                                                                                                                                                         | Elapsed time E<br>(hours)<br>0.00       | 0.00<br>0.00<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ww.         | Client<br>Site<br>Project No.<br>Borehole<br>Test Nymber<br>Test Date             | Borchole diameter<br>Borchole radiua<br>Test acction location<br>Length of test interval<br>Gauge Depth<br>Static Water Level<br>Static Water Level<br>Standstone<br>Start Time                                                                                  | Clock<br>Time<br>12258                  | 20102<br>2012<br>2012<br>2012<br>2012<br>2012<br>2012<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

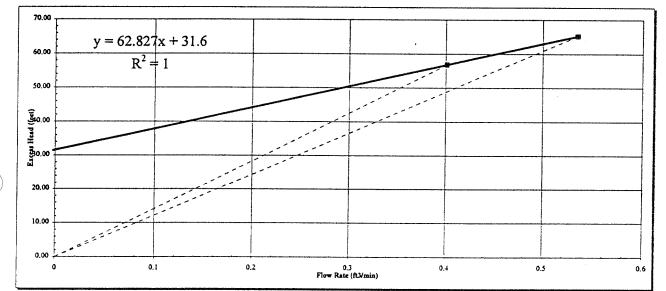
**Civiliar Associatos** 

25307A CHA, liqui Data

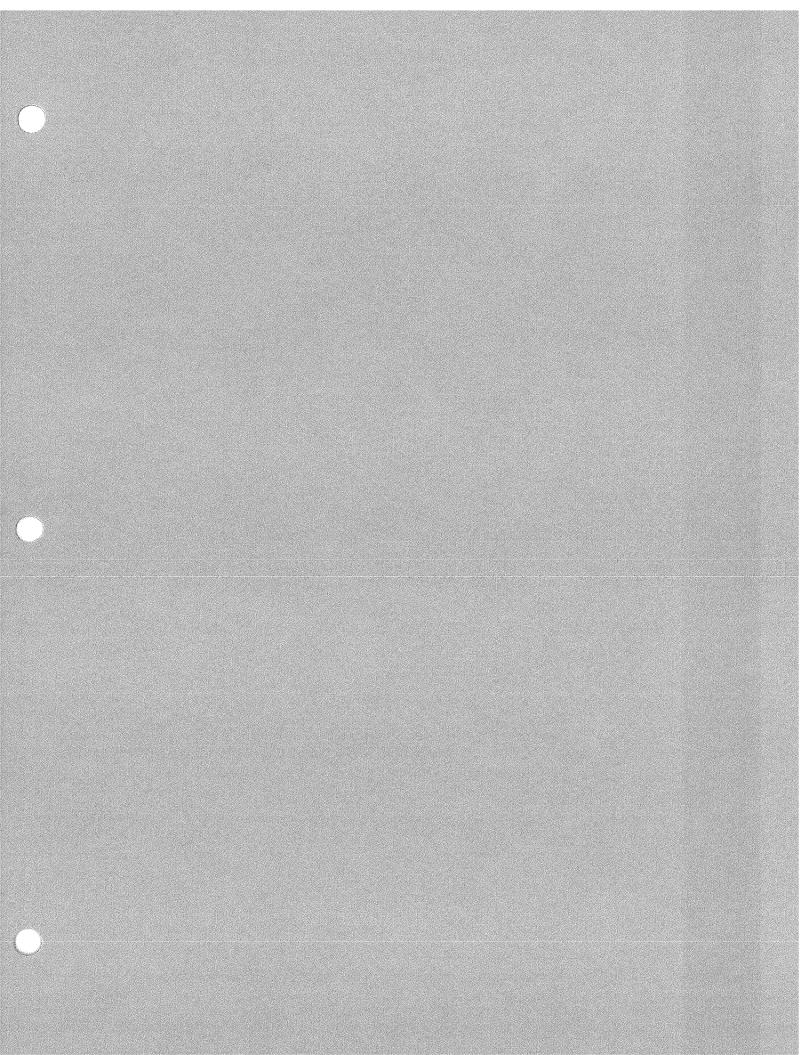


.




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

Borehole 253 Interval Number


Plot data

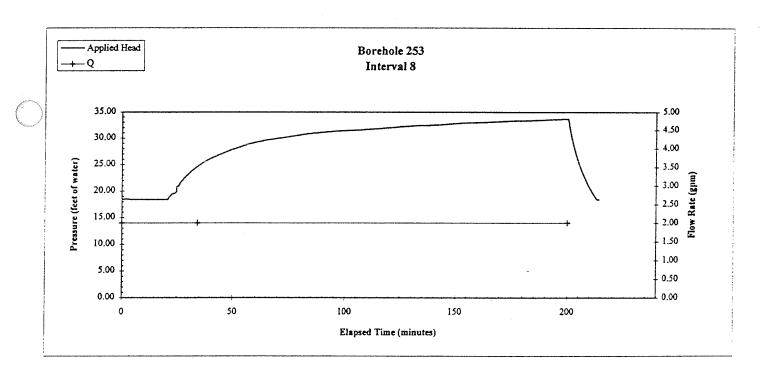
7

| Applied Head                      | Flow Rate (Q)                             | Flow Rate (Q)                              |
|-----------------------------------|-------------------------------------------|--------------------------------------------|
| (feet of water)<br>56.80<br>65.20 | (gal/min)<br>3.000<br>4.000               | (ft <sup>3</sup> /min)<br>0.4011<br>0.5348 |
|                                   | in the main of the                        |                                            |
|                                   | na sa |                                            |



| K = 1/(2   | 2πL) x (Q/h <sub>e</sub> ) x in (L/r) | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tester<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet) |
|------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Range of h | ydraulic conductivity                 |                                                                                                                          |                                  |
| K =        | 1.2E-04 cm/s<br>2.3E-04 feet/min      | $Q = 0.401 \text{ ft}^3/\text{min}$<br>$h_e = 56.80 \text{ feet}$                                                        |                                  |
| K =        | 1.4E-04 cm/s<br>2.7E-04 feet/min      | $Q = 0.535 \text{ ft}^3/\text{min}$<br>$h_e = 65.20 \text{ feet}$                                                        |                                  |
| K =        | 2.6E-04 cm/s<br>5.2E-04 feet/min      | Trendline Slope 62.83                                                                                                    |                                  |




| aaing<br>aaing<br>aaing<br>Yater) Appl<br>(feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | addle packer<br>abole<br>realculation:<br>Top of laterval<br>Vertical Depth (1)<br>130.00 Above 119.99<br>130.00 Bdow 139.96 | True vertical depth calculation: |                                                             |                                 |                         |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------|-------------------------|-----------|
| 253<br>3.06.157<br>8<br>3.78 inches<br>1.10.16 feet<br>Tra 123.22 feet below up of caring<br>Potran 147.72 feet below up of caring<br>1.17.00 feet | al<br>bore<br>dow                                                                                                            | True vertical dept               |                                                             |                                 |                         |           |
| 3.78         inchea           0.16         feet           Top         1123.22         feet below top of casing           Matter         147.72         feet below top of casing           17.10         feet below top of casing           17.10         feet below top of casing           17.11         feet below top of casing           17.12         feet below top of casing           17.13         feet below top of casing           17.14 S5         feet below top of casing           17.13         feet below top of casing           17.14 S5         feet below top of casing           17.15         feet below top of casing           17.16         feet below top of casing           17.17         feet below top of casing           17.18         feet below top of casing           17.19         feet below top of casing           17.19         feet below top of casing           17.10         feet below top of casing           12.19.01         feet below top of casing           12.19         feet below top of casing           12.19         feet below top of casing           12.19         feet of water         feet of water           0000         1147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al<br>Ertical Dep<br>bove<br>elow                                                                                            | True vertical dept               |                                                             |                                 |                         |           |
| Te         113.25<br>24.50         feet below upp of casing<br>cast below upp of casing<br>24.50         feet below upp of casing<br>cast below upp of casing<br>24.50           117.00         feet below upp of casing<br>174.95         feet below upp of casing<br>feet below upp of casing<br>port of water           12.19.01         117.00         feet below upp of casing<br>feet below upp of casing<br>port of water         Applied Head           12.19.01         117.00         feet below upp of casing<br>feet below upp of casing<br>port of the casing<br>feet below upp of casing<br>port of the casing<br>feet below upp of casing<br>port of the casing<br>feet below upp of casin                                                                                                                            | ical Dep<br>re<br>w                                                                                                          |                                  | a calculation:                                              |                                 |                         |           |
| A.3.0     Red<br>[17.00     Red below up of caring<br>(red below up of caring<br>(17.95)       12.19.01     12.19.01       12.19.01     (feet below up of caring<br>(hours)       (hours)     (minutes)       000     0       000     0.00       011     0.00       000     0.11       000     0.12       000     0.13       000     0.147       000     0.147       000     0.147       000     0.147       000     0.147       000     0.00       011     0.00       012     0.00       013     0.00       014     0.00       015     0.00       016     0.00       011     0.00       011     0.00       012     0.00       013     0.00       014     0.00       011     0.00       011     0.00       012     0.00       013     0.00       014     0.01       015     0.00       016     0.00       017     0.00       018     0.00       019     0.00       011     0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129.96                                                                                                                       | Hele depth (A)<br>Above          | Bottom of laterval<br>Vertical Depth (ft)<br>140.00 Above 1 | bepth (ft)<br>139.95            |                         |           |
| Elapsed time Measured Head Applied Head (minutes) (feet of water) (feet of wat                                                                                                                                   | 12 121                                                                                                                       |                                  |                                                             | 149.94                          |                         |           |
| Elapsed time         Measured Head         Applied Head           (minutes)         (feet of water)         (feet of water)           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         1147           0         0         0           0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                  |                                                             | N. 141                          |                         |           |
| Elapsed time         Measured Head         Applied Head           (minutes)         (feet of water)         (feet of water)           0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0         1147           0         0         0 <td< td=""><td></td><td>3 Point Moving Averages</td><td>5<b>2</b></td><td>5 Point M</td><td>5 Point Moving Averages</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | 3 Point Moving Averages          | 5 <b>2</b>                                                  | 5 Point M                       | 5 Point Moving Averages |           |
| 0         0.00         11.47           0.12         0.00         11.47           0.13         0.00         11.47           0.14         0.00         11.47           0.15         0.00         11.47           0.16         0.00         11.47           0.18         0.00         11.47           0.19         0.00         11.47           0.24         0.00         11.47           0.25         0.00         11.47           0.26         0.00         11.47           0.27         0.00         11.47           0.26         0.00         11.47           0.27         0.00         11.47           0.26         0.00         11.47           0.27         0.00         11.47           0.28         0.00         11.47           1.12         0.00         11.47           1.13         0.00         11.47           1.14         0.01         11.47           1.13         0.02         11.47           1.14         0.01         11.47           1.14         0.02         11.47           1.14         0.01         11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applied Head<br>(feet of water)                                                                                              | Δ time<br>(mins)                 | Average Q<br>(gal/min)                                      | Applied Head<br>(feet of water) | ∆ time<br>(minutes)     | Average Q |
| 0.06         0.00         11.47           0.12         0.00         11.47           0.13         0.00         11.47           0.14         0.00         11.47           0.24         0.00         11.47           0.24         0.00         11.47           0.24         0.00         11.47           0.42         0.00         11.47           0.43         0.00         11.47           0.44         0.00         11.47           0.55         0.00         11.47           0.66         0.00         11.47           0.73         0.00         11.47           0.74         0.00         11.47           0.75         0.00         11.47           0.76         0.00         11.47           1.14         0.00         11.47           1.13         0.00         11.47           1.14         0.01         11.46           1.13         0.02         11.47           1.14         0.01         11.47           1.14         0.02         11.49           1.14         0.02         11.49           1.14         0.02         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                  | !                                                           |                                 |                         |           |
| 0.13         0.00         11.47           0.24         0.00         11.47           0.25         0.00         11.47           0.42         0.00         11.47           0.43         0.00         11.47           0.42         0.00         11.47           0.43         0.00         11.47           0.44         0.00         11.47           0.54         0.00         11.47           0.73         -0.01         11.47           0.74         0.00         11.47           0.74         0.01         11.47           0.74         0.01         11.47           1.14         0.01         11.47           1.14         0.01         11.47           1.14         0.01         11.47           1.14         0.02         11.47           1.14         0.02         11.47           1.14         0.02         11.47           1.14         0.02         11.49           1.14         0.02         11.49           1.14         0.02         11.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                            |                                  |                                                             |                                 |                         |           |
| 0.24         0.00         11.47           0.36         0.00         11.47           0.42         0.00         11.47           0.43         0.00         11.47           0.46         0.00         11.47           0.54         0.00         11.47           0.6         0.00         11.47           0.73         0.00         11.47           0.74         0.00         11.47           0.74         0.01         11.46           0.74         0.01         11.46           0.74         0.01         11.47           1.14         0.01         11.47           1.13         0.02         11.47           1.14         0.01         11.47           1.14         0.02         11.47           1.13         0.02         11.49           1.14         0.02         11.49           1.14         0.02         11.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | 0.00                             | 0.0                                                         |                                 |                         |           |
| 036         000         11.47           0.42         000         11.47           0.43         000         11.47           0.54         000         11.47           0.5         000         11.47           0.6         000         11.47           0.73         -0.01         11.47           0.74         -0.01         11.46           0.74         -0.01         11.46           0.74         -0.01         11.47           1.14         0.00         11.47           1.13         0.02         11.47           1.14         0.01         11.47           1.14         0.02         11.47           1.14         0.02         11.47           1.14         0.02         11.49           1.14         0.02         11.49           1.14         0.02         11.49           1.14         0.02         11.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.07                                                                                                                        | 8.6                              | 000                                                         | 19.67                           | 00.0                    | 0,00      |
| 0.00         18,47           0.54         0.00         18,47           0.6         0.00         18,47           0.7         -0.01         18,47           0.7         -0.01         18,47           0.7         -0.01         18,47           0.7         -0.01         18,46           0.7         -0.01         18,46           0.7         -0.01         18,46           0.9         0.00         18,47           1.14         0.00         18,47           1.13         0.02         18,47           1.13         0.02         18,47           1.14         0.01         18,47           1.13         0.02         18,47           1.14         0.01         18,47           1.13         0.02         18,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              | 0.0                              | 0.00                                                        | 174                             | 000                     | 000       |
| 0.6 0.00 11.47<br>0.73 0.00 11.47<br>0.73 0.01 11.46<br>0.74 0.01 11.46<br>0.96 0.00 11.47<br>1.02 0.00 11.47<br>1.14 0.01 11.44<br>1.14 0.01 11.44<br>1.13 0.02 11.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | 00.0                             | 0.00                                                        | 18.47                           | 00.00                   | 0.00      |
| 0.72     -0.01     13.46       0.78     -0.01     13.46       0.94     -0.01     13.46       0.94     -0.01     13.47       0.94     -0.01     13.47       1.02     0.00     13.47       1.14     0.01     13.47       1.13     0.02     13.49       1.13     0.02     13.49       1.14     0.01     13.49       1.13     0.02     14.49       1.14     0.02     14.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.47                                                                                                                        | 000                              | 000                                                         | 18.47                           | 10.0-                   | 0.00      |
| 0.1         -001         18.6           0.96         -001         18.4           0.96         -001         18.4           0.96         0.00         18.47           1.02         0.00         18.47           1.14         0.01         18.47           1.13         0.02         18.49           1.13         0.02         18.49           1.13         0.02         18.49           1.13         0.02         18.49           1.14         0.02         18.49           1.13         0.02         18.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                  | 0.0                                                         | 18.4/<br>18.46                  | 20.9<br>70.9            | 0.0       |
| 0.% 0.00 18.47<br>1.02 0.00 18.47<br>1.14 0.01 18.47<br>1.13 0.02 18.49<br>1.13 0.02 18.49<br>1.13 0.02 18.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              | 10'0                             | 00.00                                                       | 18.46                           | 00.0                    | 0.0       |
| 102 0.00 18.47<br>1.14 0.01 18.49<br>1.32 0.02 18.49<br>1.38 0.02 18.49<br>1.38 0.02 18.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.45                                                                                                                        | 0.02                             | 000                                                         | 18.46                           | 0.02                    | 0.00      |
| 1.14 0.01 18.48<br>1.12 0.02 18.49<br>1.13 0.02 18.49<br>1.13 0.02 18.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | 10'0                             | 0.0                                                         | 18.47<br>18.47                  | 0.02                    | 000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 10.0                             | 00.00                                                       | 18.48                           | 0.01                    | 000       |
| 0.02 BL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.45<br>12.45                                                                                                               | 10.0                             | 00:0                                                        | 18.48                           | 10.0                    | 0.00      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 800                              | 0010                                                        | 18.49<br>18.49                  | 10.0                    | 0.0       |
| 67'ti 70'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | 0.0                              | 00.0                                                        | 18.49                           | 10.0                    | 00 M      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 10.0                             | 0.00                                                        | 18.49                           | 00 0                    | 0.00      |
| 1.64 0.02 13.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 0.00                             | 000                                                         | 18.49                           | 10.0                    | 0.00      |
| 1.46 0.03 14,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 10<br>18 10                                                                                                                | 90.0<br>2                        | 000                                                         | IE.49                           | 0.00                    | 0.00      |
| 1.86 0.02 13.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 800                              | 0.00                                                        | 15.49                           | 10.0                    | 0.0       |
| 03.81 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | 98.9                             | 0.00                                                        | 18,50                           | 000                     | 80.0      |
| 2.04 0.03 18.50<br>2.1 0.01 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              | 0.0                              | 0.00                                                        | 18.50                           | 10.0                    | 00.0      |
| 2.22 0.04 18.50<br>2.22 0.04 18.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | 10:0                             | 0.00                                                        | 11.50                           | 00.0                    | 0.00      |
| 2.28 0.03 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 0.00                             | 0.00                                                        | 13.50                           | 0.00                    | 0.00      |
| 0.04 2.34 0.03 18.50 A. 2.34 0.03 A. 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | 98.0                             | 0.0                                                         | 16.50                           | 000                     | 0.0       |

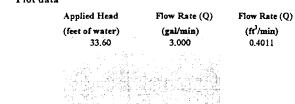
Ookler Associates

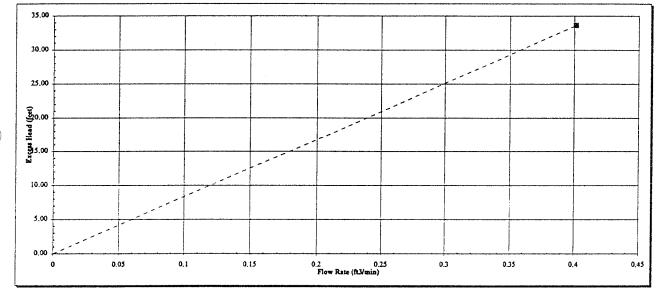
25308A CHA, Input Data

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)33.603.000

t,



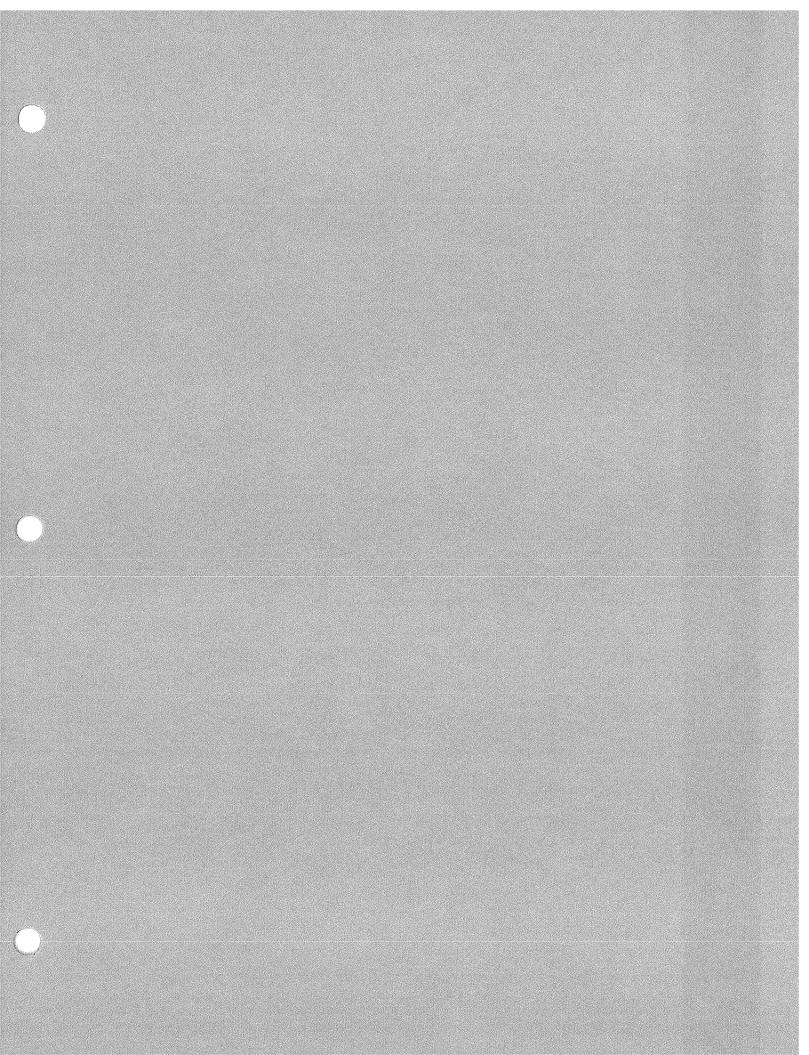

Client Morrison-Maierle/CSSA Site Miner Flat Project No. 943-27691


Borehole Interval Number

### Plot data

253

8



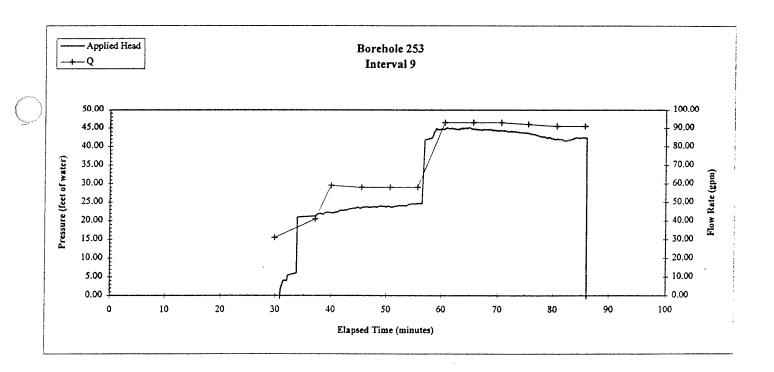



| $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ | K = hydraulic conductivity      | (feet/min) |
|--------------------------------------------------|---------------------------------|------------|
|                                                  | Q = Flow rate                   | (ft³/min)  |
|                                                  | he = Applied head               | (feet)     |
|                                                  | L = length of interval tested   | (feet)     |
|                                                  | $\mathbf{r} = $ borehole radius | (feet)     |
| Range of hydraulic conductivity                  |                                 |            |

| K = | 2.0E-04 cm/s     | Q =              | 0.401 | ft³/min |
|-----|------------------|------------------|-------|---------|
|     | 3.9E-04 feet/min | h <sub>e</sub> = | 33.60 | feet    |

.



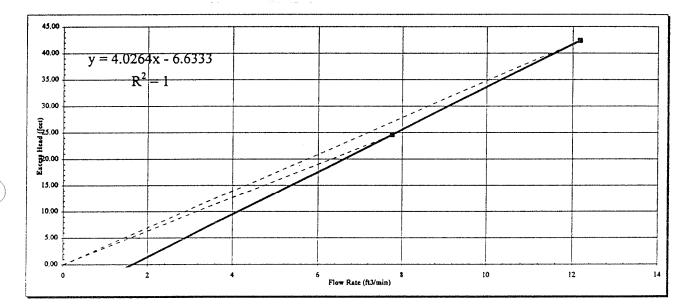

| 0(1,1975-646                                  |                                                  |                                                                                                                                                                                                                      |                                  | Average Q<br>(gal/min)           | ĺ                          | 0.00                          | 8 8 9                                                                           | <b>8</b><br>80<br>00<br>00<br>00<br>00 | 00.0<br>00.0                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 8 8                                                                                       | 80 0<br>90 0<br>90 0                                                                             | 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |
|-----------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------|-------------------------------|---------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| $\left( \begin{array}{c} \end{array} \right)$ |                                                  |                                                                                                                                                                                                                      | S Point Moving Averages          | Δ tíme Avi<br>(minutes) (ga      |                            |                               | 8 8 9 8<br>5 6 5 5                                                              |                                        |                                                                    | 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                                                                                  | 000<br>000<br>010<br>010<br>010<br>010<br>010<br>010<br>010<br>010 |
|                                               |                                                  | bepth (ft)<br>115,99<br>129,96                                                                                                                                                                                       | S Point Mov                      | Applied Head<br>(feet of water)  |                            | 15.51<br>18.51<br>19.51       | 15.21-<br>15.21-<br>15.21-                                                      | 16.11<br>18.11<br>18.11                | 1621-<br>1821-<br>1821-                                            | 12.12<br>12.11<br>12.12<br>13.12<br>13.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.12<br>14.121 |                                                                                             | 2 4 4<br>2 4 4<br>2 4 4<br>2 4<br>2 4<br>2 4<br>2 4<br>2 4<br>2                                  | 221<br>1231<br>1249<br>1249<br>1240                                |
|                                               |                                                  | True vertical depth calculation:<br>Bottom of laterval<br>Hole depth (n) Vertical Depth (n)<br>Above 1120.00 Above 1<br>Below 130.00 Below 1<br>Vertical depth of bottom of laterval (n) 1                           | ges                              | Average Q<br>(gal/min)           | 8.6                        | 0.00<br>00.0<br>0.00          | 30 G<br>30 G<br>30 G                                                            | 00.0<br>00.0                           | 300<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 8 0 0 0<br>8 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00.0<br>00.0                                                                                | 00.0<br>00.0<br>00.0                                                                             | 000<br>000<br>000<br>000<br>000<br>000                             |
|                                               |                                                  | True vertical depth calculatioa:<br>Bottom<br>Hole depth (n)<br>Abava 130.00<br>Bolow 130.00<br>Vertical depth of bottom of later                                                                                    | 3 Point Moving Averages          | Δ time<br>(mins)                 | 00.0                       | 00'0<br>00'0<br>00'0          | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>9 | 8 8 8<br>8 6 8                         | 8.9                                                                | 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0                                                                                  | 90 0<br>90 0<br>90 0<br>90 0<br>90 0<br>90 0<br>90 0<br>90 0                                     | 0,00<br>0,00<br>0,10<br>0,09                                       |
|                                               |                                                  | a:<br>Trai<br>Prai<br>Abora 1999<br>Bidow 99,99<br>Bidow 99,99<br>V V                                                                                                                                                | 3 Point                          | Applied Head<br>(feet of water)  | -12,51                     | 12.1-<br>12.1-<br>12.1-       | 25.21-<br>25.21-<br>18.21-                                                      | 12.1<br>12.1<br>12.1                   | 12.1-<br>22.1-<br>22.1-                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 221-<br>221-<br>221-                                                                        | 12.52<br>12.52<br>12.52<br>12.52                                                                 | -12.52<br>-12.52<br>-12.60<br>-12.61<br>-12.62                     |
|                                               |                                                  | Test Type:<br>Constant bend, Straddle packer<br>Gauge located downhale<br>True vertical depth calculation:<br>True vertical depth calculation:<br>Hole depth (ft) Vertical<br>Above 80.00 Buow<br>Bdow               |                                  |                                  |                            |                               |                                                                                 |                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                                  |                                                                    |
|                                               |                                                  | Test Type:<br>Coastant head, Straddle packer<br>Gauge located downhale<br>True vertical depth calculations:<br>True vertical depth (t)<br>Vove 9000 Julierval<br>Bélow 100,00 B<br>Vertical depth of top of laterval |                                  | Q<br>(gaVmin)                    |                            |                               |                                                                                 |                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                                  |                                                                    |
|                                               |                                                  |                                                                                                                                                                                                                      |                                  | Applied Head<br>(feet of water)  | 12.11<br>12.11<br>12.11    |                               |                                                                                 |                                        |                                                                    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 11 22<br>11 22<br>11 23<br>12 4<br>12 4                            |
|                                               |                                                  | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet<br>feet below top of casing                                                                                                           |                                  | Measured Head<br>(feet of water) | -<br>10 0 0 0              | 10 0<br>0<br>0<br>0<br>0<br>0 | 0.05<br>0.02<br>0.02                                                            | 10.0                                   | -0.02<br>-0.02<br>-0.02                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.02<br>10.02<br>10.02                                                                     |                                                                                                  | 404<br>405<br>406<br>409                                           |
|                                               | 1e/CSSA                                          | 7.1<br>0.16<br>95.00<br>120.10<br>123.00<br>170.93                                                                                                                                                                   |                                  | Elapsed time<br>(minutes)        | 0<br>0.12<br>0.12<br>0.13  | E.0<br>342.0<br>24:0          | 0,72<br>87,0<br>484                                                             | <b>1</b><br>6.0<br>20                  | 701<br>11                                                          | 1 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 62<br>1 62                                                                                | 1.8<br>1.86<br>1.96<br>2.04                                                                      |                                                                    |
|                                               | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 253<br>9 (r)<br>14-Dec-95<br>Top<br>Boutann                                                                                                                                                                          |                                  | Liapsed fime<br>(hours)          | 8 8 8 8<br>9 9 9 8         | 10'0<br>10'0                  | 10:0<br>10:0                                                                    | 0.01<br>0.02<br>0.02                   | 0.02                                                               | 0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £0'0<br>£0'0                                                                                | 0.0<br>0.0<br>0.0                                                                                | 6 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0                             |
| Conctr<br>Conctr                              | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date<br>Borchole diameter<br>Borchole radius<br>Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level<br>Central Litbology                           | Sandstone<br>Start Thue<br>Clock | Time<br>740 M                    | 2004-7<br>2004-7<br>2004-7 | 7:49:46<br>7:49:50<br>7:49:53 | 11.96.7<br>7.50.15<br>7.50.18                                                   | 7:50:18<br>7:50:22<br>7:50:26          | 7.50.29<br>7.50.36<br>7.50.40                                      | 7:90.44<br>7:90:51<br>7:00:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7:51:02<br>7:51:05<br>7:51:09                                                               | 05126<br>75120<br>75127                                                                          | 7:51:54<br>1:61:67<br>7:51:68                                      |

Golder Associates

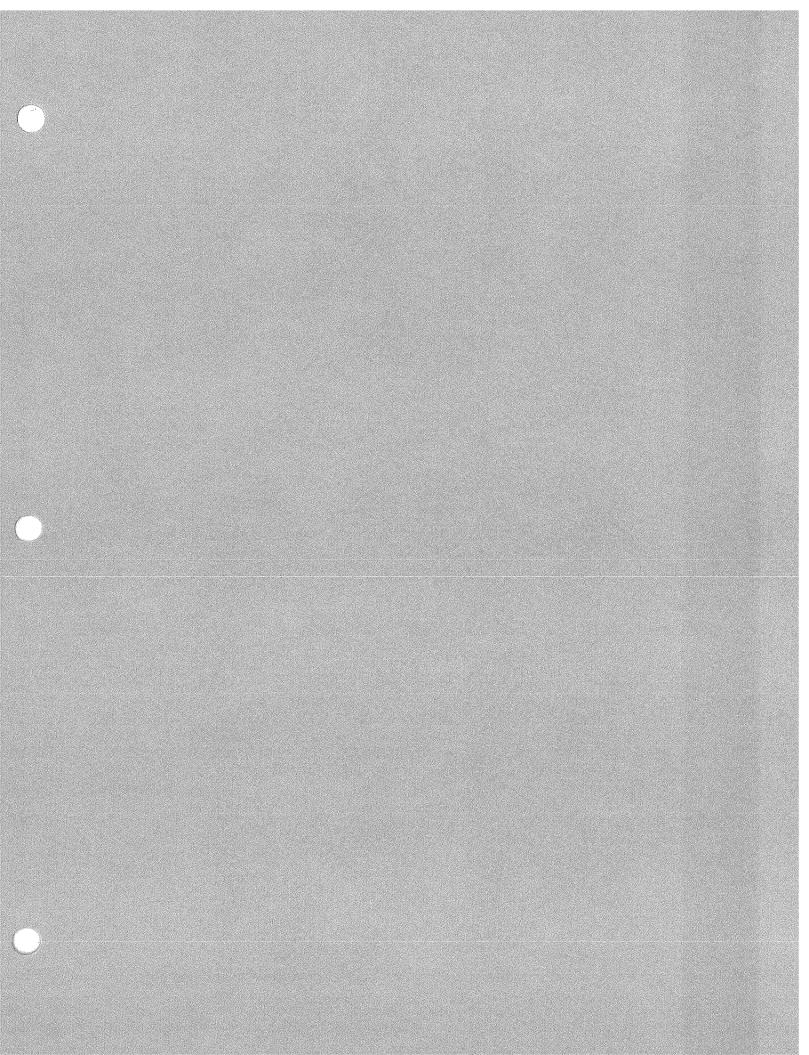
25309A.CHA, Input Data

# Plot data used in analysis Applied Head Flow Rate (Q) (feet of water) (gal/min) 42.36 91.000 24.59 58.000

i




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |


Borehole 253 Interval Number 9 (r)

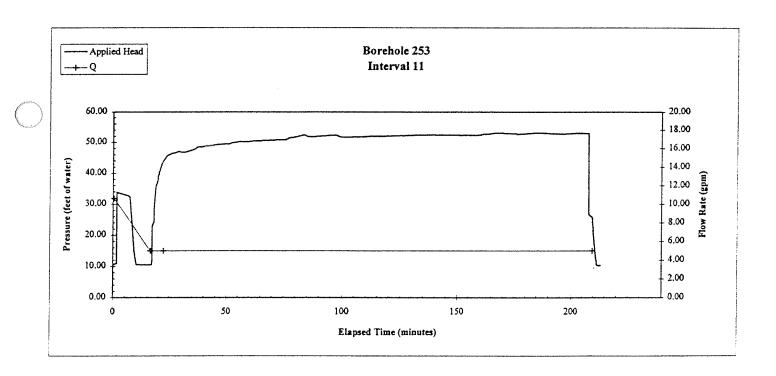
Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 42.36           | 91.000        | 12.1667                |
| 24.59           | 58.000        | 7.7546                 |
|                 | 1.00          |                        |
|                 |               |                        |



| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x in (L/r) | Q = Flow<br>he = Appl<br>L = length | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |                              |  |  |  |  |  |  |
|------------|---------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Range of l | bydraulic conductivity                |                                     |                                                                                                                          |                              |  |  |  |  |  |  |
| K =        | 4.7E-03 cm/s<br>9.2E-03 feet/min      | Q =<br>h <sub>e</sub> =             | 12.167<br>42.36                                                                                                          | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =        | 5.1E-03 cm/s<br>1.0E-02 feet/min      | Q =<br>h <sub>e</sub> =             | 7.755<br>24.59                                                                                                           | ft <sup>3</sup> /min<br>feet |  |  |  |  |  |  |
| K =        | 4.0E-03 cm/s<br>8.0E-03 feet/min      | Trendline Slope                     | 4.03                                                                                                                     |                              |  |  |  |  |  |  |



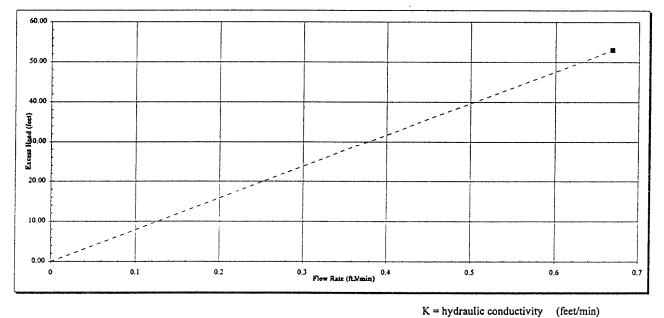

| 0(1.1415-614 |                                                  |                                                                        |                                  |                                          |                                                              |                                            |                                | 1ges                    | Average ()<br>(coltraio)         |         |                               |                | 2.12       | 11             | 80          | 00'0           | 8.0     | 8.8    | 0.00   | 8.9            | 0000    | 00.00          | 0.0            |         | 00 0         | 0.00            | 0.00           | 0.00           | 0000             | 0.00          | 000     | 0.00           | 0.00           |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------|--------------------------------|-------------------------|----------------------------------|---------|-------------------------------|----------------|------------|----------------|-------------|----------------|---------|--------|--------|----------------|---------|----------------|----------------|---------|--------------|-----------------|----------------|----------------|------------------|---------------|---------|----------------|----------------|
|              |                                                  |                                                                        |                                  |                                          |                                                              |                                            |                                | 5 Point Moving Averages | ∆ time<br>(minuted)              |         |                               |                | 0.34       | 61.0<br>97.0-  | 11.0        | 60.0           | 0110    | 0.20   | 0.16   | 0.18<br>1 1 0  | 0.0     | 0.10           | 0.0            | 110     | 22.91        | 21.65           | 11.23          | 10.44<br>27.5  | er 7             | -2.19         | -2.05   | -2.41          | 91.5-<br>20.5- |
|              |                                                  |                                                                        |                                  | liaterval<br>Vertical Depth (ft)         | 66'61<br>86'68                                               | 88°89                                      |                                | 5 Point M               | Applied Head<br>(feet of water)  |         |                               |                | 10.62      | 10.05<br>07.01 | 10.66       | 10.62          | 10.04   | 10.69  | t0.73  | 10.78<br>10.81 | 10.54   | 10.86          | 10.01<br>10.00 | 10.01   | 15.52        | 19.83           | 24.11          | 17.92<br>22.02 | 212              | 31.04         | 30.49   | 29.92          | 29.37<br>28.81 |
|              |                                                  |                                                                        | True vertical depth calculation: | Bottom of interval<br>Vertical           | 80,00 Above                                                  | Vertical depth of bottoms of interval (ft) |                                | ng cs                   | Average Q<br>(gal/min)           |         |                               | 3.53           | 61         | 00.0           | 0.60        | 000            | 000     | 0.00   | 0.0    | 8.0            | 00.0    | 0.0            | 900            | 00.00   | 0.00         | 0.00            | 000            | 000            | 0.00             | 0.00          | 0.00    | 0.00           | 0000           |
|              |                                                  |                                                                        | rue vertical dep                 | Hole depth (ft)                          | Abova<br>Below                                               | crtical depth of                           |                                | 3 Point Moving Averages | Δ time<br>(mins)                 | •       |                               | 12.0           | 8.0<br>200 | 24             | 4.17        | 10.0           | 0.0     |        | 11.0   | 0.0            | 6.03    | 10.0           | 0.02           | 0.06    | 0.12         | 21.15           | <b>5</b> 1     | 601-           | -1.14            | -0.97         | -1.05   | 101-           | ŧ; Ţ           |
|              |                                                  |                                                                        | Ŧ                                | erval<br>Vertical Depth (ft) H           | 69.99<br>79.99                                               | V, 68.67                                   |                                | 3 Point                 | Applied Head<br>(feet of water)  |         |                               | 10.52          | 10.67      | 10.72          | 10.62       | 10.58<br>10.60 | 10.64   | 10.68  | 10.74  | 10.02          | 10.84   | 10.16<br>10 10 | 10.69          | 10.93   | 10.96        | 18.60           | 23.80<br>32.86 | 32.07          | 11.57            | 31.00         | 30.52   | 79.97<br>24.74 | 28.78<br>28.78 |
| $\bigcirc$   |                                                  | Test Type:<br>Constant bood, Straddle packer<br>Gauge located downhole | True vertical depth calculation: | Top of int                               | 70.00 Above<br>\$0,00 Below                                  | Vertical depth of top of interval (I)      |                                |                         |                                  |         | ator d' e d'<br>Seguerro - se |                |            |                |             |                |         |        |        |                |         |                |                |         |              |                 |                |                |                  |               |         |                |                |
|              |                                                  | Test Type:<br>Constant head<br>Gauge located                           | True vertical (                  | Hole depth (ft)                          | Above<br>Below                                               | Vertical depth                             |                                | .e                      | Q<br>(gal/min)                   |         |                               |                |            |                |             |                |         |        |        |                |         |                |                |         |              |                 | - 83           |                |                  |               |         |                |                |
|              |                                                  |                                                                        | -                                |                                          |                                                              |                                            |                                |                         | Applied Head<br>(feet of water)  | 60.01   | 601                           | 10.39<br>20.72 | 10.14      | 10.73          | 10.59       | 10.36<br>10.60 | 10.64   | 10.69  | 10.10  | 10.61          | 10.87   |                |                |         |              | 20.11<br>Cir II |                |                |                  |               | 30.01   |                |                |
|              |                                                  |                                                                        | inch <b>e</b> s                  | feet<br>feet below top of caring         | food below top of caaing<br>food<br>food helow top of caaing | feet below top of casing                   |                                |                         | Measured Head<br>(feet of water) | 10:0-   | 10.0-                         | 10.0-<br>1 16  | 9.4<br>1   | ££.0           | 0'I0<br>X 0 | 0.10           | 0.24    | 0.29   | 04.0   | 0.41           | 0.47    | . 1970         | 0.51           | 0.50    | 0.57         | 10.01           | 21.15          | 21.80          | 21.06            | <b>29</b> .02 | 19.61   | 10.61          | 18.25          |
|              | hucssa                                           |                                                                        |                                  |                                          | 88.90<br>15.00<br>71.00                                      |                                            |                                |                         | Elapsed time<br>(minutes)        | 0       | 0.06                          | 0.12<br>0.42   | 0.45       | 0.48           | 95.0<br>4.0 | 0.0<br>99 D    | 0.72    | 0.75   | 80     | 1.02           |         | 1.26           | 1.36           | 4       | 85.1<br>1.55 | 191             | 1.14           | 7.26           | 1.12             | 11            | 35.1    | 7.62           | 7.68           |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 253<br>11<br>25-0ci-95                                                 |                                  | Tep<br>T                                 |                                                              |                                            |                                | 7:52:36                 | Elapsed time<br>(hours)          | 00.0    | 0.00                          | 0000           | 0.01       | 10.0           | 100         | 10.0           | 10.0    | 10.0   | 0.02   | 0.02           | 0.02    | 0.02           | 0.02           | 0.03    | 10.0         | 0.03            | 0.12           | 0.12           | 0.12             | 0.12          | 61.0    | 0.13           | 0.13           |
| Kingl        | Client<br>Site<br>Project No.                    | Borcholc<br>Test Number<br>Test Date                                   | Borehole diameter                | Borehole radius<br>Teat section location | Leagth of test interval<br>Gauge Depth                       | Static Water Level                         | General Lithology<br>Sandstone | Start Time              | Clock<br>Time                    | 7.32.36 | 7.52.40                       | 19161          | 20,12,1    | 7.51.05        | 7.57.04     | 91167          | 1.53.19 | 00:001 | 16.657 | 10001          | 1,53.46 | 7,53,52        | V.E.C.1        | 1.54.02 | 0.82         | 7:34.17         | 1139.44        | 12.42.7        | 7.9255<br>50,005 | 1,00,02       | 8,00,10 | £1:00:1        | 8.00.17        |

Golder Associates

25311A CHA, hour Data

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)53.005.000

, **f** 




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 253                   |

Interval Number 11

### Plot data

| Applie  | d Head   | Flow Rate (Q) | Flow Rate (Q)          |
|---------|----------|---------------|------------------------|
| (feet o | f water) | (gal/min)     | (ft <sup>3</sup> /min) |
|         | 53.00    | 5.000         | 0.6685                 |
|         |          |               |                        |



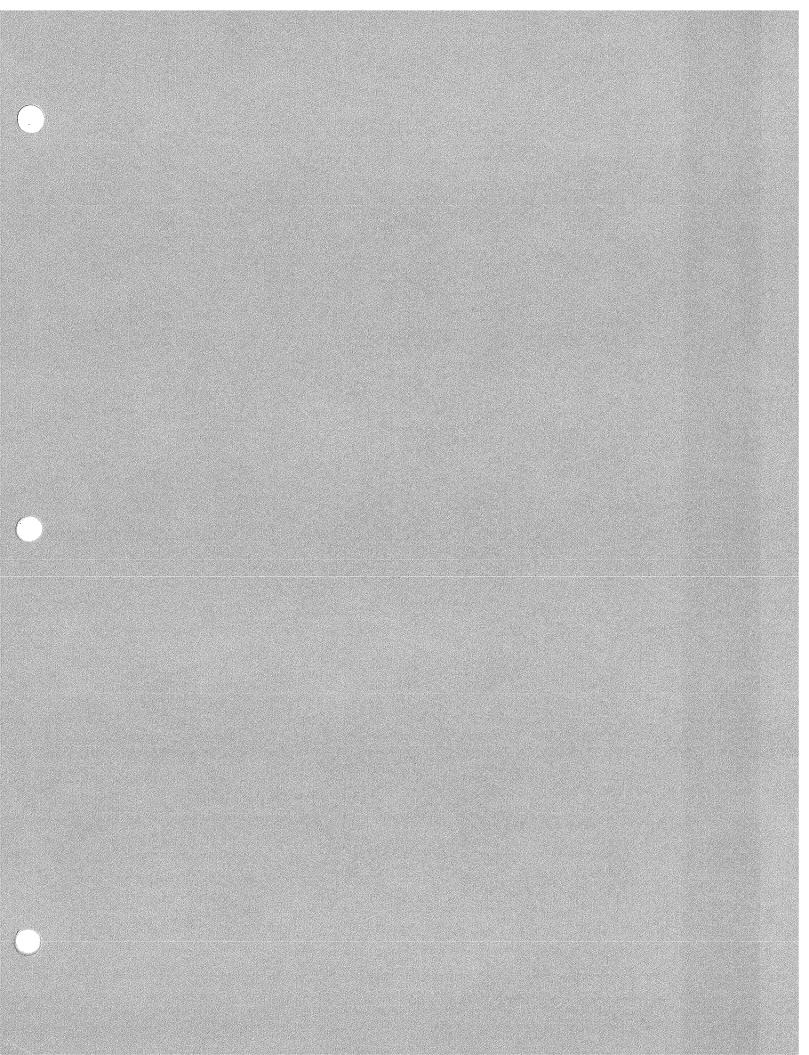
| K = | $1/(2\pi L) \ge (Q/h_e)$ | x ln (L/r) |
|-----|--------------------------|------------|
|-----|--------------------------|------------|

#### Range of hydraulic conductivity

| K = | 3.1E-04 cm/s     | Q =              | 0.669 | ft³/min |
|-----|------------------|------------------|-------|---------|
|     | 6.1E-04 feet/min | h <sub>e</sub> = | 53.00 | feet    |

Q = Flow rate

he = Applied head


r = borehole radius

L = length of interval tested (feet)

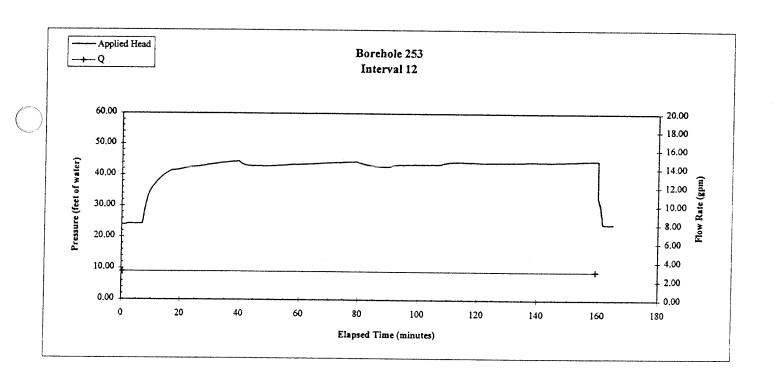
(ft<sup>3</sup>/min)

(feet)

(feet)



| 01.1912-194                                    |                                                  |                                                                        |                                                                                                                                 |                                                                     | Average Q<br>(gaVmin)            |          |               | 070               | 09.0                 | 0.60       | 0.00           | 0.00                                 | 0.00           | 0.00        | 80       | 0.00           | 0.0               | 0.0           | 0.00     | 00.0           | 0000     | 000      | 00.0     | 0.00          | 0.00                 | 0.00     | 00.0           | 00.0     | 0.00     |
|------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|----------|---------------|-------------------|----------------------|------------|----------------|--------------------------------------|----------------|-------------|----------|----------------|-------------------|---------------|----------|----------------|----------|----------|----------|---------------|----------------------|----------|----------------|----------|----------|
| $\left(\begin{array}{c} \\ \end{array}\right)$ |                                                  |                                                                        |                                                                                                                                 | 9<br>5 Point Moving Averages                                        | ∆time Av<br>(minutes) (g         |          |               | 10.0-             | 10.0                 | -0.02      | 10 Q           | -0.07                                | -0.07          | 10.01       | 0.00     | 0.03           | 0.07              | 60'0          | 0.10     | 0.11           | C1 0     | 71.0     | 0.10     | 0.06          | 0.03                 | 0.03     | 10.0           | 10.0     | 00.0     |
|                                                |                                                  |                                                                        | alh (f)<br>63.99<br>79.99                                                                                                       | 74.79<br>5 Point Mo                                                 | Applied Head<br>(feet of water)  |          |               | 24.02             | 24.02                | 24.01      | 28.02<br>59.52 | \$6.62                               | 23.56          | <b>1</b> .2 | 1.93     | 16,11          | ¥.11              | 87 EZ         | 24.00    | 24.03          | 24.06    | 24.11    | 24.14    | 24.16         | 24.18                | 24.18    | 24.19          | 24.19    | 34.26    |
|                                                |                                                  |                                                                        | alculation:<br>Bottom of laterval<br>Vertical Depth (n)<br>70.00 Abuve 6<br>80.00 Balow 1                                       | iom of laterval (f)<br>s                                            | Average Q<br>(gal/min)           |          | 8             | 8 1 8             | 1.00                 | 0.00       | 0.0            | 00.00                                | 00.0           | 0.0         | 00.00    | 00.00          | 200               | 0.00          | 0.00     | 0.00           | 00.0     | 0.0      | 00.00    | 0.00          | 0.00                 | 0.00     | 0.00           |          | 0.0      |
|                                                |                                                  |                                                                        | True vertical depth calculation:<br>Bottom<br>Hole depth (1)<br>Above 70 00<br>Balow 80 00                                      | Vertical depth of bottom of laterval (1)<br>3 Point Moving Averages | Δ time<br>(mins)                 |          |               | 5 <b>7</b>        | 10.0-                | 0.0        | 0.0            | 50'0-                                | 3 2<br>9 9     | 5 7         | 0.00     | 0.0            |                   | 10.0          | 0.05     | 0.05<br>2.2.2  | 0.0      | 10.0     | 0.04     | 90.04         | 0.02                 | 10.0     | 10.0           | 8        | 80       |
|                                                |                                                  |                                                                        | s: Tr<br>ryal Vertical Depth (It) Hi<br>Above 30,00<br>Below 39,99                                                              | 30.10 V(<br>3 Point                                                 | Applied Head<br>(feet of water)  |          | 1012          | 24.02             | 24,01                | 24.01      | 34.00          | 39,52                                | 8.5            | 26.02       | 29,62    | 29.02          | <b>1</b>          | 36.12         | 24.00    | 24.03          | 24.05    | 24.12    | 24.15    | 24.17         | 24.18                | 24.19    | 91.92<br>01.11 | 97 F     | 24.20    |
|                                                |                                                  | addle packor<br>shole                                                  | i calculation:<br>Top of laterval<br>20,00 Above<br>60,00 Below                                                                 | op ef laterval (f)                                                  |                                  |          |               |                   |                      |            |                | 1 (mg) (1<br>1 (mg) (1<br>1 (mg) (1) |                | 1.14        | 1        |                |                   |               |          |                |          | - 14     |          |               |                      |          |                | :        |          |
| $\bigcirc$                                     |                                                  | Test Type:<br>Coastant bend, Striddla packer<br>Gauge located downhole | Truc vertical depits calculation:<br>Top of latery<br>Hole depits (ft) 20,00 A<br>Above 60,00 B                                 | Vertical depth of top of Interval (n)                               | Q<br>(gal/min)                   |          |               | 3.8               |                      |            |                |                                      |                |             |          |                |                   |               |          |                |          |          |          |               |                      |          |                |          |          |
|                                                |                                                  |                                                                        |                                                                                                                                 | -                                                                   | Applied Head<br>(feet of water)  | 24.03    | 24.04         | 24.01             | 24.01                | 24.01      | 24.00          | 1912                                 | 21.97<br>14.12 | 16.12       | 16.62    | 23.92          | 8.12              | 19.62         | 24.00    | 24.03          | 24.05    | 24.12    | 24.15    | 24.16         | 24.19                | 24.19    | 24.17          | 24.20    | 24.20    |
|                                                |                                                  |                                                                        | inchea<br>feet<br>feat below uop of <b>caning</b><br>feat below uop of <b>caning</b><br>feat<br>feat below top of <b>caning</b> | foot below top of curing                                            | Measured Head<br>(feet of water) | -0.02    | 10.0-<br>00:0 | -0.0 <del>1</del> | -0.04<br>10.0        | <b>1</b> 7 | -0.05          | -0.07                                | 60)7<br>11 0-  | 61.9        | -0.14    | [].0-<br>[].0- | -0.0 <del>0</del> | -0.0 <b>t</b> | -0.05    | -0.02<br>D (M) | 0,0      | 0.07     | 0.10     |               | 0.14                 | 41 n     | 0.14           | 0.15     | 0.15     |
|                                                | JCSSA                                            |                                                                        |                                                                                                                                 | 66.0/1                                                              | Elapsed time<br>(minutes)        | 0        | 0.15          | 0.42              | 970<br>770           | 9.0        | 0.6            | <b>2</b> ,66                         | 0.75           | 0.84        | 96.0     | 1.14           | 12                | 1.26          | <b>2</b> | * *            | 1 62     | 1.68     | 5.8      | 9 <b>1</b> .1 | 161                  | H07      | 111            | 1.28     | 2.34     |
|                                                | Morrison-Maleric/CSSA<br>Miner Flat<br>943-27691 | 253<br>12<br>25-0ci-95                                                 | Tap                                                                                                                             | 12:15:47                                                            | Elapsed time  <br>(hours)        | 00.0     | 0.00          | 10.0              | 10.0                 | 10.0       | 0.01           | 0.01                                 | 0.01           | 0.01        | 0.02     | 20.0           | 0.02              | 0.02          | 0.02     | 70'0           | 0.03     | 0.03     | 0.03     | 0.01<br>0.01  | 50,0                 | 60 M     | 10.0           | 100      | 0.04     |
| () MARCE                                       | Client<br>Site<br>Project No.                    | Borehole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole cadius<br>Test section location<br>Length of test interval<br>Cauge Depth                         | stauc water Level<br>General Lithology<br>Sandstone<br>Start Time   | Clock<br>Time                    | 12.15.47 | 12.15.51      | 12:16:12          | 12.16.16<br>17.16.19 | 12.16.23   | 12:16:23       | 12:16:27<br>13:16:30                 | 12-16-34       | 12.16.37    | 12.16.45 | 12.16.55       | 12.16.59          | E0.71.21      | 12:17:06 | 12.72.1        | 12:17:24 | 12:17:28 | 50.71.21 | 12-17-46      | 04/11/11<br>07/11/11 | 12.17.50 | 12.14.00       | 12.14.04 | 12:18,07 |


**Coldor Associates** 

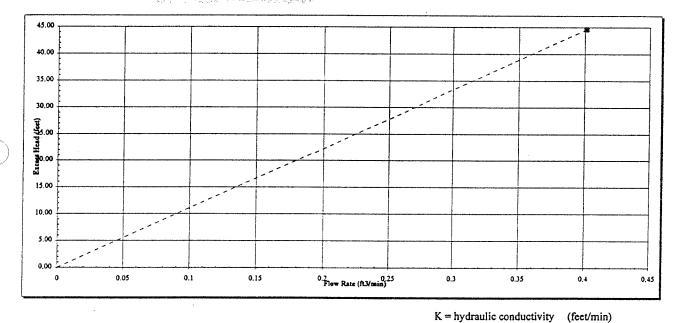
.

25312A CHA, liqui Data

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)44.603.000

;




(\_\_\_\_\_

Client Morrison-Maierle/CSSA Site Miner Flat Project No. 943-27691 Borehole 253

Interval Number 12

#### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>)</sup> /min) |
| 44.60           | 3.000         | 0.4011                 |
|                 |               |                        |
|                 |               |                        |
|                 |               |                        |
|                 |               |                        |



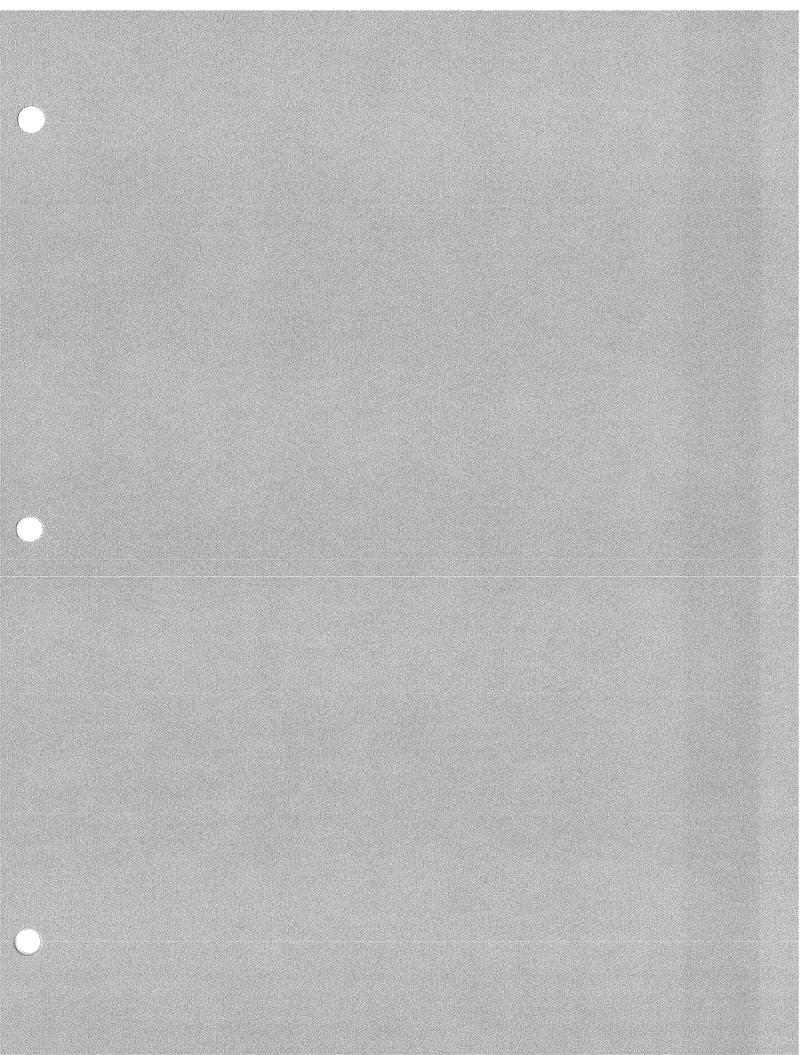
| $K = 1/(2\pi L) x$ | (Q/h_) x ] | ln (L/r) |
|--------------------|------------|----------|
|--------------------|------------|----------|

#### Range of hydraulic conductivity

| K = | 1.5E-04 cm/s     | Q =              | 0.401 | ft³/min |
|-----|------------------|------------------|-------|---------|
|     | 2.9E-04 feet/min | h <sub>e</sub> = | 44.60 | feet    |

(ft<sup>3</sup>/min)

(feet)


(feet)

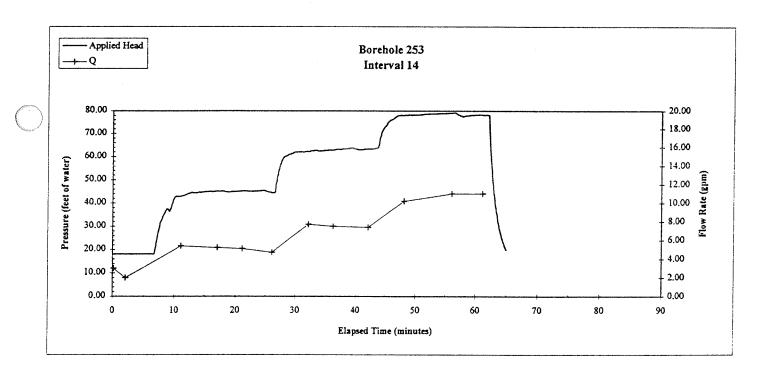
(feet)

Q = Flow rate he = Applied head

r = borehole radius

L = length of interval tested



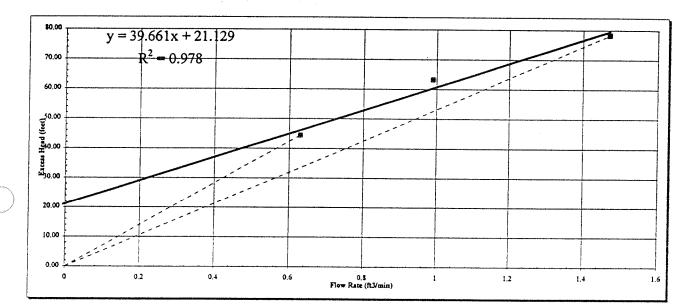

| 041.1975-646                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | Average Q<br>(gal/min)           |                                  | 0.60<br>0.60         | 0.00                 | 0.00<br>00.00     | 0000         | 0.0                  | 8              | 80 00<br>00 00<br>00 00 | 8.0                  | 80           | 800            | 0.0      | 0.00     | 0.00                 | 040<br>04   | 97.0           | 0,60     | 0.40     | 00.0  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------|----------------------|-------------------|--------------|----------------------|----------------|-------------------------|----------------------|--------------|----------------|----------|----------|----------------------|-------------|----------------|----------|----------|-------|
| $\left( \begin{array}{c} \end{array} \right)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #<br>5 Point Moving Averages                                       | ∆ time<br>(minutes)              |                                  | 10:0                 | 000<br>900           | 00.0              | 000<br>000-  | 100                  | 10.0           | 0.0                     | 10:0                 | 00.0         | 0.00           | 90.'Q    | 0.02     | 0.00                 | 000         | 3              | 0.01     | £0.0-    | 10.0- |
|                                               | laterval<br>Vertical Depth (f)<br>Above 89.99<br>Below 99.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.09<br>5 Point M                                                 | Applied Head<br>(feet of water)  |                                  | 18.08<br>18.08       | 18.08<br>18.09       | 60 60 E           | 18.10        | 18.09<br>18.10       | 18.10<br>      | 11.11                   | 14,12<br>14,12       | 8.8          | (1.8)<br>(1.8) | II II    | 18.11    | 11.11                |             | 11.11          | 18.10    | 14.10    | 18.05 |
|                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vertical depth of bottom of interval (ft)<br>at Moving Averages    | Average Q<br>(gal/min)           | 1.8                              | 1.00                 | 8 8 C                | 3 8 3             | 0.00         | 00.0                 | 00.0           | 000                     | 00.0<br>00.0         | 00.00        | 0.00<br>00.0   | 0.00     | 0.0      | 00.0                 | 0.67        | 0.67           | 0.67     | 0:00     | 0.0   |
|                                               | True vertical depth calculation:<br>Bottom<br>Hode depth (T)<br>Above - 90.00<br>Below - 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vertical depth of botto<br>3 Point Moving Averages                 | ∆ time<br>(mins)                 | 10.0                             | 0.0<br>80.0          | 883                  | 10.0              |              | 10.0                 | 0.01<br>10.0-  | 0.00                    | 6.01<br>6.01         | 0.0          | 10.0           | 10.0-    | 50:0-    | 0.05                 | 0.00        | 10.0-          | 10.0     | 0.05     | 10.0  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69.99 V<br>3 Point                                                 | Applied Head<br>(feet of water)  | 18.08                            | 18.06<br>18.06       | 50 SI                | 9 8               | 60 H         | 18.10                | 18.10<br>18.10 | 11.11                   | 111                  | tru          | 11.13          | 11.51    | 18.10    |                      | 18.13       | 11.11          | 18.09    | 18.08    | 18.10 |
| $\bigcirc$                                    | Test Type:<br>Constant head, Straddle packer<br>Gauge located downholo<br>True vertical depth calculation:<br>True vertical bepth calculation:<br>Hole depth (ft) Vertical Depth (ft)<br>Above 0.99<br>Bidow 79,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vertical depth of top of interval (ft)                             | Q A (fgal/min) (fi               |                                  | <b>3.6</b>           |                      |                   |              |                      |                |                         |                      |              |                |          |          |                      |             | 2,00           |          |          |       |
|                                               | Test 1<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const<br>Const | Ve                                                                 | Applied Head<br>(feet of water)  | 18.09<br>18.06<br>18.08          | 80 81<br>80 81       | 18.01                | 18.12<br>18.08    |              |                      | 18.12          | 18.08<br>11 12          |                      |              | '              | [1.]]    |          |                      |             | (1.01<br>(1.01 | 1.1      | 11 K     |       |
|                                               | inches<br>foet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | foot below top of casing                                           | Measured Head<br>(feet of water) | 900<br>1000<br>1000              | <b>3</b> 13 2        | 6.0<br>40.0          | 0.07<br>0.03      | 0.03<br>0.07 | 90.0                 | 0.07           | 0.03                    | 0.08                 | 9.08<br>9.00 | 0.07           | 0.06     | 0.03     | 0.08                 | <b>10.0</b> | 0.08           | 10.0     | 0.05     |       |
|                                               | 12/CSSA<br>3.78<br>0.16<br>70.00<br>25.10<br>25.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170.93                                                             | Elapsed time<br>(minutes)        | 0<br>0.06<br>0.12                | 0.24                 | 0.42<br>0.54         | 0.6<br>0.72       | 0.78<br>0.84 | 94 O                 | 1.14           | 1.26                    | <b>1</b> C1          | <u> </u>     | 1.62           | 1.6      | 1.86     | 1.96                 | 101         | 1              | 111      | 13       |       |
|                                               | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>253<br>14<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec                                                                                                                                                                                                                                                                                                                                                                                                                         | 10:43:54                                                           | Elapsed time<br>(hours)          | 90 0<br>90 0<br>90 0<br>90 0     | 00.0                 | 10.0<br>10.0         | 10.0              | 10.0         | 0.02                 | 0.02           | 0.02<br>0.02            | 0.02                 | 10'0<br>10'0 | 0.03           | 0.0      | 60.0     | 0.03                 | 00          | 100            | 0.0      | 10.0     |       |
| Jrsow A                                       | Client<br>Site<br>Project No.<br>Borchole<br>Test Number<br>Test Date<br>Borchole diameter<br>Borchole indua<br>Test action location<br>Length of test laterval<br>Gauge Deptb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Static Water Level<br>General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                    | 10,43,54<br>10,43,01<br>10,44,01 | 10:44,08<br>10:44:16 | 10:44:19<br>10:44:26 | 0044301<br>704437 | 10:44:41     | 10:44:52<br>10:44:55 | 10.45.02       | 10:45:10                | 10:43:17<br>10:43:00 | 10:45:28     | 10:45:31       | 10.45.42 | 10:45:46 | 10.45.53<br>10.45.53 | 10.46.00    | 10.46.07       | 10:46:11 | 10.46:14 |       |

Golder Associates

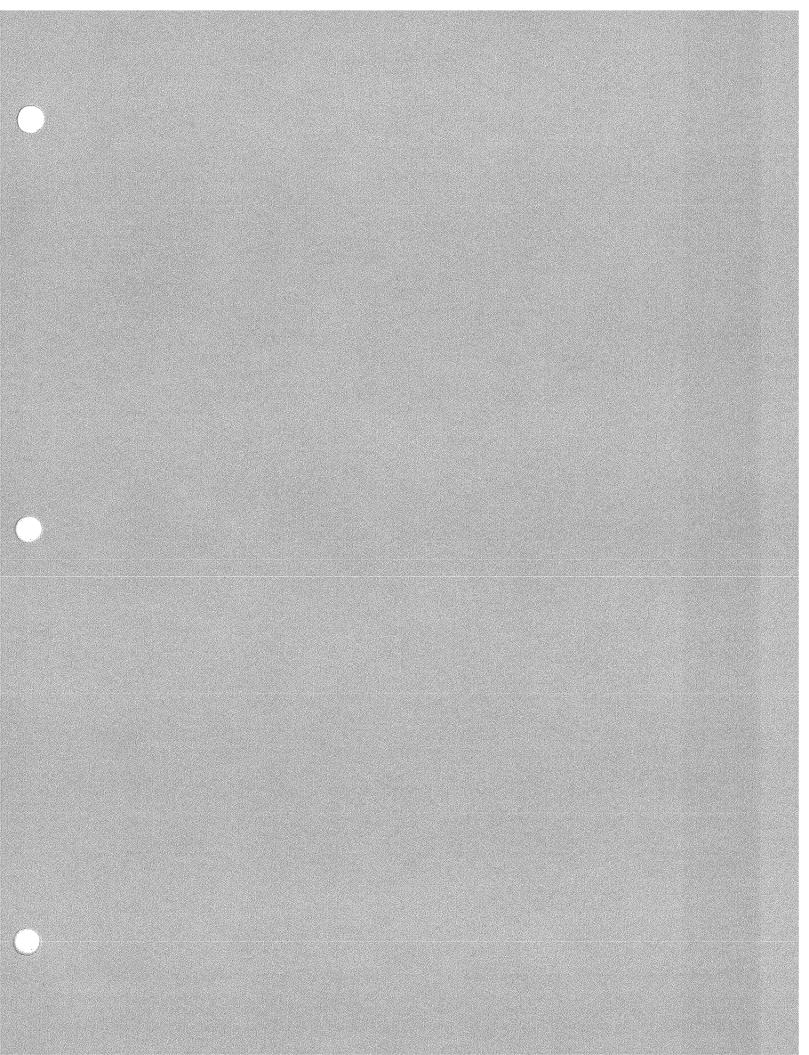
25314A CHA, liqui Data

| Plot data used in analysis |                 |  |  |  |  |  |  |
|----------------------------|-----------------|--|--|--|--|--|--|
| Applied Head               | Flow Rate (Q)   |  |  |  |  |  |  |
| (feet of water)            | (gal/min)       |  |  |  |  |  |  |
| 44.40                      | 4.700           |  |  |  |  |  |  |
| 63.26<br>78.22             | 7.400<br>11.000 |  |  |  |  |  |  |

i




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 253                   |


| DOLETO   | e      | 433 |
|----------|--------|-----|
| Interval | Number | 14  |

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |  |  |  |  |
|-----------------|---------------|------------------------|--|--|--|--|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |  |  |  |  |
| 44.40           | 4.700         | 0.6284                 |  |  |  |  |
| 63.26           | 7.400         | 0.9894                 |  |  |  |  |
| 78.22           | 11.000        | 1.4707                 |  |  |  |  |



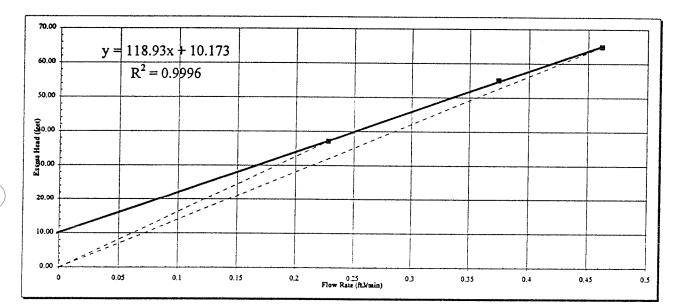
| K = 1/(2   | $2\pi L$ ) x (Q/h <sub>e</sub> ) x in (L/r) | Q = Flow<br>he = App<br>L = lengt | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius |  |  |  |  |  |
|------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Range of h | ydraulic conductivity                       |                                   |                                                                                                                          |  |  |  |  |  |
| K =        | 2.3E-04 cm/s<br>4.6E-04 feet/min            | Q =<br>h <sub>e</sub> =           | 0.628 ft <sup>3</sup> /min<br>44.40 feet                                                                                 |  |  |  |  |  |
| K =        | <b>3.1E-04 cm/s</b><br>6.0E-04 feet/min     | $Q = h_e =$                       | 1.471 ft <sup>3</sup> /min<br>78.22 feet                                                                                 |  |  |  |  |  |
| K =        | <b>4.1E-04 cm/s</b><br>8.1E-04 feet/min     | Trendline Slope                   | 39.66                                                                                                                    |  |  |  |  |  |



| 0E17642-EP6 |                                                                                                                                                                                                                         |                                                                            | Average Q<br>(gal/min)           |                                              | 0.0<br>0.00<br>0.00              | 00.0<br>00.0                             | 00.0<br>00.0                                                                                     | 00 00 00<br>00 00 00             | 00 <sup>0</sup> 0                      | 0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$  |                                                                                                                                                                                                                         | »<br>5 Point Moving Averages                                               | ∆ time<br>(minutes)              | Ì                                            | 10:0-<br>10:0-<br>10:0           | 10.0<br>10.0                             | 00'0<br>00'0                                                                                     | 00'0<br>10'0                     | 10'0-<br>10'0-                         | \$0;0<br>\$0;0<br>09:0                                                                                                                                                                                                                                                                                                                                        | 0 00<br>0 00<br>0 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | iaterval<br>Vertical Depth (f)<br>Abore 69.99<br>Below 79.99                                                                                                                                                            | 70.09<br>5 Point M                                                         | Applied Head<br>(feet of water)  |                                              | 18.55<br>18.55<br>18.55          | 18.55<br>18.55<br>18.55                  | 18.55<br>18.55<br>18.55                                                                          | 18.55<br>18.55<br>18.55          | 2 2 2<br>2 2 2                         | 85 21<br>25 21<br>25 22 21<br>25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 11.14<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15<br>14.15 |
|             | b calculation:<br>Bottom of interval<br>Vertical 1<br>70.00 Above                                                                                                                                                       | Vertical depth of bottom of laterval (ft)<br>it Moving Averages            | Average Q<br>(gaVmin)            | 0.0                                          | 00'0<br>00'0                     | 00'0<br>00'0<br>00'0                     | 80.0<br>80.0<br>80.0                                                                             | 0.00<br>09.00<br>00.00           | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 8 8 8 8 8<br>8 8 8 8 8                                                                                                                                                                                                                                                                                                                                        | 8 8 8 8 8 8 8 8<br>9 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | True vertical depth calculation:<br>Bottom<br>Hole depth (ft)<br>Above 70.00<br>Bdow 80.00                                                                                                                              | <ul> <li>Vertical depth of botto</li> <li>Point Moving Averages</li> </ul> | ∆ time<br>(mins)                 | -0.03                                        | 0.01<br>0.00<br>0.02             | 0.02<br>10.0                             | 9870<br>1070                                                                                     | 10'0<br>10'0                     | 60.0<br>90.0<br>10.0                   | 5 8 8 8 8<br>7 6 6 6 8                                                                                                                                                                                                                                                                                                                                        | 000<br>000<br>100<br>100<br>100<br>100<br>100<br>00<br>100<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                         | 3.10 V<br>3 Point                                                          | Applied Head<br>(feet of water)  | 18.56                                        | 18.56<br>18.55<br>18.55          | 82.81<br>82.81<br>82.61                  | 5<br>5<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1 | 18.25<br>18.51<br>18.55          | 25 11 11<br>25 12 11<br>25 12 11       |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | traddle packer<br>webole<br>th calculation:<br>Top of laterval<br>40.00 Above<br>50.00 Bebow                                                                                                                            |                                                                            |                                  |                                              |                                  |                                          |                                                                                                  | - 11                             |                                        |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\bigcirc$  | Test Type:<br>Constant Mend, Straddle packer<br>Gauge located downhole<br>True vertical depth calculation:<br>Hole depth (ft)<br>Vove 40.00 Abb<br>Below 50.00 Bel                                                      |                                                                            | Q<br>(gal/min)                   |                                              |                                  |                                          |                                                                                                  |                                  |                                        |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                         |                                                                            | Applied Head<br>(feet of water)  | 14.57<br>18.57<br>18.56                      | 12.21<br>14.24                   | 87 B B B B B B B B B B B B B B B B B B B |                                                                                                  | 11.35<br>11.56<br>11.56          |                                        |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | inches<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                                                                                                      | •                                                                          | Measured Head<br>(feet of water) | 0.0<br>0.0<br>0.0                            | 20.0-<br>20.0-<br>20.0-          | 90 Q<br>90 Q<br>90 Q                     | 20.0-<br>20.0-                                                                                   | 8 9 5 9<br>9 7 9 7<br>9 8 9 9    |                                        | 33 33 33 33<br>9 9 9 9<br>9 9 9                                                                                                                                                                                                                                                                                                                               | 98 98 50 7 9 9<br>9 9 9 9 9 9<br>9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | arte/CSSA<br>3.78<br>0.16<br>70.10<br>25.00<br>19.00                                                                                                                                                                    |                                                                            | Elapsed time<br>(minutes)        | 0<br>0.06<br>0.12                            | 0.0<br>86.0<br>24.0              | 9.0<br>2.6<br>2.7.0                      | 17.0<br>17.0<br>18.0                                                                             | <u> </u>                         | 1.18                                   | 1.56<br>1.62<br>1.8                                                                                                                                                                                                                                                                                                                                           | 1,16<br>1,92<br>2,04<br>2,1<br>2,2<br>2,2<br>2,34<br>2,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Morrison-Mai<br>Miner Flat<br>943-27691<br>253<br>15<br>253<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95<br>14-Dec-95                                                                                                         | 12:07:54                                                                   | time<br>s)                       | 8 8 8 8                                      | 10.0<br>10.0                     | 10:0<br>10:0                             | 0.01<br>0.02<br>0.02                                                                             | 0.02<br>0.02<br>0.02             | 0.02<br>0.02<br>0.02                   | 0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                          | 000<br>000<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Joon        | Client<br>Site<br>Project No.<br>Borchole<br>Test Number<br>Test Number<br>Test Number<br>Borchole diameter<br>Borchole cadius<br>Test section location<br>Length of test interval<br>Gauge Depta<br>Static Water Lovel | General Lithology<br>Sandsione<br>Start Time                               |                                  | 12.07:54<br>12.07:58<br>12.08.01<br>12.08.05 | 12.08.12<br>12.08.16<br>12.04:19 | 12.04.26<br>12.04:30<br>12.04:37         | 12.08.41<br>12.08.44<br>12:08:52                                                                 | 12.09.02<br>12.09.02<br>12.09.06 | 12.09:10<br>12.09:17<br>12.09:20       | 82:00:21<br>15:09:21<br>26:09:21<br>26:09:21                                                                                                                                                                                                                                                                                                                  | 12.09.46<br>12.09.49<br>12.09.36<br>12.10.00<br>12.10.07<br>12.10.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Colder Associates

25315A.CHA, liput Data

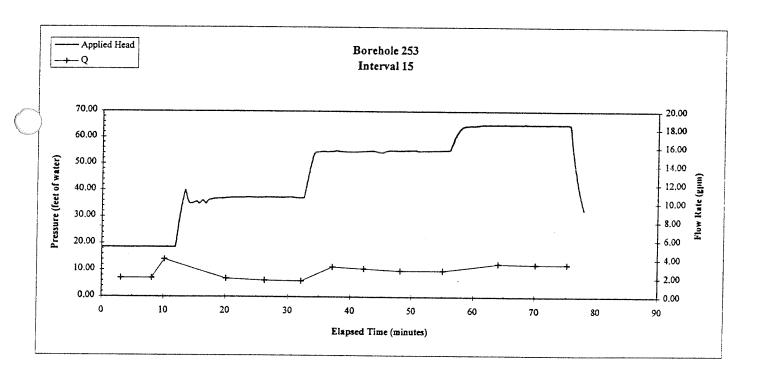

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

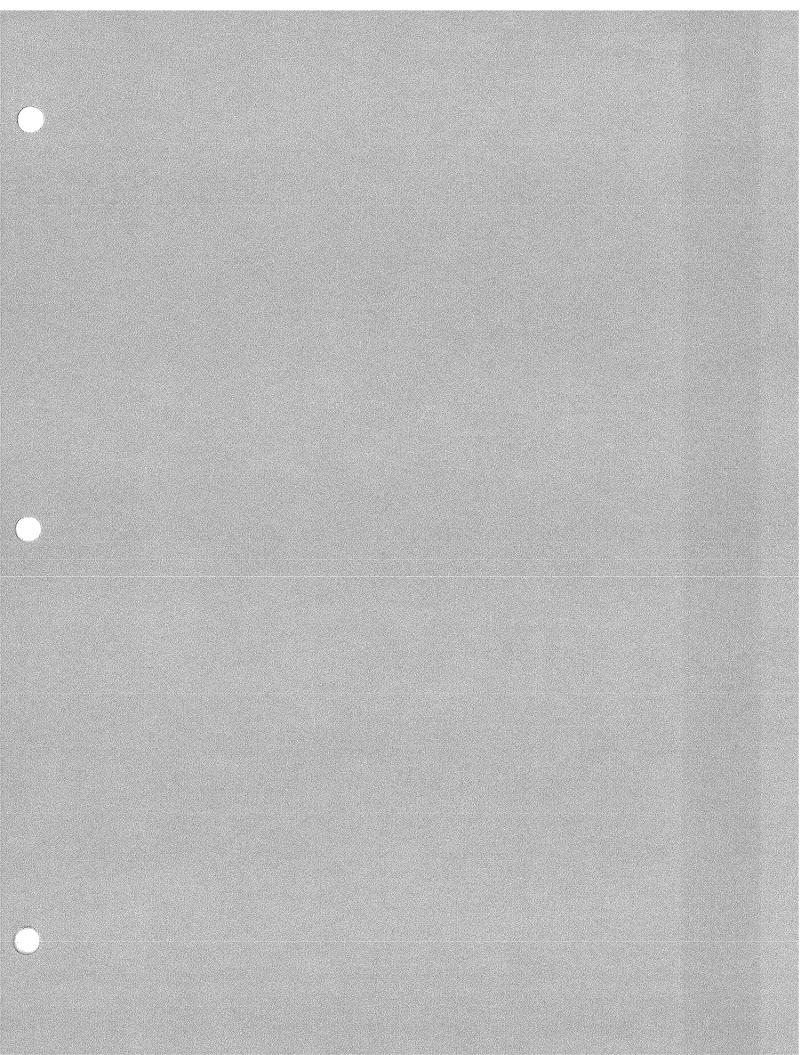
| Borehol  | e      |
|----------|--------|
| Interval | Number |

Plot data

253 15

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |  |  |  |  |
|-----------------|---------------|------------------------|--|--|--|--|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |  |  |  |  |
| 37.09           | 1.700         | 0.2273                 |  |  |  |  |
| 55.02           | 2.800         | 0.3744                 |  |  |  |  |
| 64,83           | 3.450         | 0.4613                 |  |  |  |  |





| K = 1/(.   | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | K = hydr $Q = Flow$ $he = App$ $L = lengt$ $r = boreh$ | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |                              |  |
|------------|---------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------|--|
| Range of h | hydraulic conductivity                |                                                        |                                                                    |                              |  |
| K =        | 1.0E-04 cm/s<br>2.0E-04 feet/min      | Q =<br>h <sub>e</sub> =                                | 0.227<br>37.09                                                     | ft <sup>3</sup> /min<br>feet |  |
| K =        | 1.2E-04 cm/s<br>2.3E-04 feet/min      | Q =<br>h <sub>e</sub> =                                | 0.461<br>64.83                                                     | ft <sup>3</sup> /min<br>feet |  |
| K =        | 1.4E-04 cm/s<br>2.7E-04 feet/min      | Trendline Slope                                        | 118.93                                                             |                              |  |

.

| Plot data used  | in analysis   |
|-----------------|---------------|
| Applied Head    | Flow Rate (Q) |
| (feet of water) | (gal/min)     |
| 37.09           | 1.700         |
| 55.02           | 2.800         |
| 64.83           | 3.450         |

;





Packer Testing Results Borehole MF 254

C

 $\bigcirc$ 

| Interval # |        | Tutomo      | 1 N - 4      | and a state of the second state |                     |                  |          |                              |          |           |            |
|------------|--------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|---------------------|------------------|----------|------------------------------|----------|-----------|------------|
|            |        | THICKA      | merval Deput |                                                                                                                 | Lithology           |                  |          | Hvdraulic Conductivity       | andmetiv | ritu      |            |
|            | T      | Top         | Bottom       | tom                                                                                                             |                     |                  |          |                              |          |           |            |
|            | IN THE | 1           |              |                                                                                                                 |                     |                  | Inna     |                              |          | cm/sec    |            |
|            | (JUC)  | (elevation) | (tbtc) (     | (elevation)                                                                                                     |                     | Low <sup>4</sup> | High     | High Regression <sup>3</sup> | Low'     | High      | Regression |
| 13         | 29.00  | 6032.25     | 35 40        | 28 2009                                                                                                         | 1                   |                  |          |                              |          |           |            |
| c1         | 35 40  | 20 2002     | 0000         | C0.C200                                                                                                         | Dasait              | 2.6/E-04         |          |                              | 1.36E-04 |           |            |
|            | 01.00  | C0.C200     | 06.60        | 6001.35                                                                                                         | Basalt              | 1.27E-03         |          |                              | 6 48F-04 |           |            |
| ((1) 11    | 55.00  | 6006.25     | 65.00        | 5996.25                                                                                                         | Basalt              | 9.48E-05         | 1.04E-04 | 1 155-04                     | 4 915 05 | 6 7 2 7 6 |            |
| 10 (14)    | 64.92  | 5996.33     | 90.02        | 5971.23                                                                                                         | Sandstone/Bacalt    | 3 245-03         | 0 010 0  |                              | -101E-00 | 0.205-00  | S.83E-US   |
| 6          | 80.07  | 5071.22     | 115.00       |                                                                                                                 | 1000 minimum manuel | CU-302.C         | 8.UIE-U3 | 2.236-02                     | 1.65E-03 | 4.07E-03  | 1.29E-02   |
|            | 7/./0  | CC.176C     | 70.CII       | 5946.23                                                                                                         | Sandstone           | 5.07E-03         | 7.17E-03 | 1.13E-02                     | 2 57E-03 | 3 64F-01  | 5 7AB 03   |
| 8          | 113.58 | 5947.67     | 138.94       | 5922.31                                                                                                         | Sandstone           | 4 53E-04         |          |                              |          |           | 7.14E-UJ   |
| 7          | 138.58 | 5977 67     | 163.04       | 10 2003                                                                                                         |                     |                  |          |                              | 2.30E-04 |           |            |
| 7          |        | 10.44/0     | +4.001       | 16.1480                                                                                                         | Sandstone           | 3.20E-04         | -        |                              | 1.63E-04 |           |            |
| 0          | 80.001 | 5897.67     | 188.94       | 5872.31                                                                                                         | Sandstone           | 1.76E-04         | 1 86F-04 | 1 016-04                     | 0 050 05 | 0 425 05  |            |
| 5          | 189.25 | 5872.00     | 214.11       | 5847.14                                                                                                         | Sandstone           | \$ 03E-06        |          |                              | 0.202-00 | y.43E-U3  | 9.71E-05   |
| 4          | 214.11 | 5847.14     | 238 98       | 5877 77                                                                                                         |                     | 00-777.7         |          |                              | 3.01E-06 |           |            |
| 3          | 00 000 |             | 0.00-*       | 17.7700                                                                                                         | Sandstone           | 4.71E-07         |          |                              | 2.39E-07 |           |            |
|            | 04.007 | 17.7780     | 263.85       | 5797.40                                                                                                         | Sandstone           | 9.41E-07         |          |                              | 4 78F-07 |           |            |
| 2          | 263.96 | 5797.29     | 288.85       | 5772.40                                                                                                         | Sandstone           | 4 74B_06         |          |                              | 10-70/-4 |           |            |
|            | 288.83 | CF (77)     | 212 70       |                                                                                                                 |                     | 20-71-1-1        |          |                              | 2.41E-06 |           |            |
|            |        | 71.7110     | 0/.010       | CC.14/C                                                                                                         | Sandstone           | 2.34E-06         |          |                              | 1.19E-06 |           |            |
|            |        |             |              |                                                                                                                 |                     |                  |          |                              | 22.2.2   |           |            |

<sup>1</sup> Feet below top of casing.

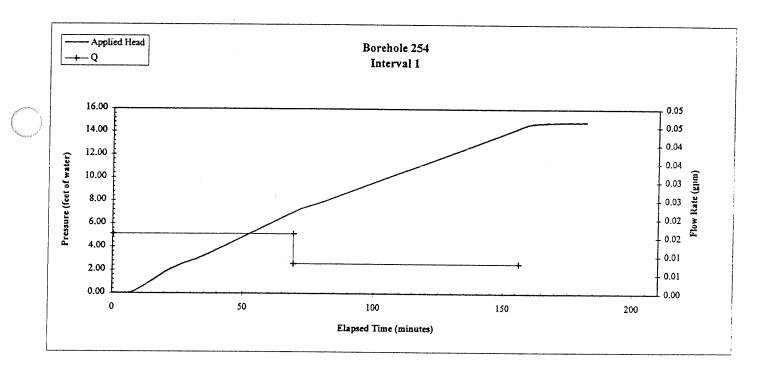
;

<sup>2</sup> Feet above mean sea level
 <sup>3</sup> Regression analysis does not include origin as a point.
 <sup>4</sup> Single point tests are presented in the "low" value column, however, they do not necessarily represent the low value for that interval.

7/30/96

254

| 0(1'16/2-EM6 |                                                         |                                                                        |                                                                                                                                                                                |                                                                         | Average Q<br>(gal/min)           |                      |              | 0.00                 | 0 0      | 0.00                 | 00.0         | 90.0     | 0.00     | 0.00                 | 0.00     | <b>0</b> 0.0 | 0.00     | 08.0     | 0.0      | 0.00   | 0.00         | 000      | 0.0      | 000      | 0.00     | 00.0     |
|--------------|---------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|----------------------|--------------|----------------------|----------|----------------------|--------------|----------|----------|----------------------|----------|--------------|----------|----------|----------|--------|--------------|----------|----------|----------|----------|----------|
| $\bigcirc$   |                                                         |                                                                        |                                                                                                                                                                                | 5 Point Moving Averages                                                 | ∆ time<br>(minutes)              |                      |              | 0.00                 | 0.00     | 0.00                 | 00.0         | 0 00     | 80       | 000                  | 000      | 000          | 0.00     | 0.00     | 800      | 10.0   | 00'0         |          | 0.0      | 00.0     | 0.00     | 000      |
|              |                                                         |                                                                        | epth (ft)<br>309-36<br>319-36<br>313-66                                                                                                                                        | 5 Point M                                                               | Applied Head<br>(feet of water)  |                      |              | 10.0                 | 10.0     | 10.0                 | 10.0<br>10.0 | 10.0     | 10.0     | 10.0                 | 10.0     | 10,0         | 0.01     | 10.0     | 10.0     | 10'0   | 10:0         | 10.0     | 10.0     | 0.01     | 10.0     | 10.0     |
|              |                                                         |                                                                        | True vertical depth calculation:<br>Bottom of laterval<br>Bottom of laterval<br>Botom 310.00 Above 20<br>Botom 320.00 Below 31<br>Vertical depth of bottom of laterval (ft) 31 | 3                                                                       | Average Q<br>(gal/min)           |                      | 0.00         | 10.0                 | 10.0     | 000                  | 00.0<br>00.0 | 0.00     | 0.0      | 0.0                  | 0.0      | 0.0          | 0.00     | 00:0     | 00.0     | 0.00   | 0:00         | 00.0     | 0.0      | 0.00     | 0,00     | 0000     |
|              |                                                         |                                                                        | True vertical depth calculation:<br>Bottom e<br>Hole depth (ft)<br>Above 310.00<br>Below 320.00<br>Vertical depth of bottom of inter                                           | 3 Point Moving Averages                                                 | A time<br>(mins)                 |                      | 10.0-        | 8.9                  | 8 8      | 8.9                  | 8 8          | 0.0      | 8 8      | 0.00                 | 93.0     | 0.0          | 0.0      | 90 G     | 10.0     | 0.00   | 90'0<br>00'0 | 0.0      | 0.0      | 0.00     | 00.0     | 00:0     |
|              |                                                         |                                                                        | at: Tn<br>rval<br>Vertical Depth (n) Ho<br>Above 219,96 (n)<br>Below 219,96 (n)<br>val (n) 244.79 Ve                                                                           | 3 Point                                                                 | Applied Head<br>(feet of water)  |                      | 10.0         | 10.0                 | 10.0     | 10'0                 | 10.0         | 10.0     | 10.0     | 10.0                 | 10:0     | 10.0         | 10:0     | 10.0     | 10.0     | 0.01   | 10.0         | 100      | t0:0     | 0.01     | 10.0     | 10.0     |
| $\bigcirc$   |                                                         | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole | vertical depth calculati<br>Top of iau<br>kepth (ft) 240.00<br>290.00<br>290.00                                                                                                |                                                                         | ر<br>(وau/min)                   |                      |              | 0,00                 |          |                      |              |          |          | e<br>Totog           |          |              |          |          |          |        |              |          |          |          |          |          |
|              | ł                                                       | <u>5</u> 5                                                             | True.<br>Hole c<br>Above<br>Below                                                                                                                                              |                                                                         | Applied Head<br>(feet of water)  | 0.02                 | 10.0<br>10.0 | 10 0                 | 10:0     | 10.0                 | 10.0         | 10.0     | 10:0     | 10.0                 | 10.0     |              | 10 0     | 100      | 0.01     | 0.02   | 0.02         | 0.02     | 0.02     | 10'0     | 0'0      | 70.0     |
|              |                                                         |                                                                        | inchea<br>feet<br>feet below top of casing<br>feet<br>feet<br>feet<br>feet below top of casing<br>foet below top of casing                                                     |                                                                         | Measured Head<br>(feet of water) | 0.02                 | 10.0         | 10.0                 | 10.0     | 0.0                  | 10.0         | 10.0     | 10'0     | 10:0                 | 10:0     | 0.01         | 10/0     | 10'0     | 10.0     | 0.02   | 0.02         | 0.02     | 0.02     | 0.01     | 70'D     | 10.0     |
|              | JCSSA                                                   |                                                                        | 1.78<br>0.16<br>288.83<br>313.70<br>24.87<br>24.87<br>157.87                                                                                                                   |                                                                         | Elapsed time<br>(minutes)        | 00.0<br>00.0         | 0.12         | 00.0                 | 0.42     | 0.54                 | 0.72         | 0.78     | 8.0      | 1.02                 | 1.20     | 1.26         | 121      | 8        | 1.80     | 2 1    | 16.1         | 1.94     | 2.04     | 2.10     |          | 1        |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>244 | 234<br>1<br>26-Oct-95                                                  | Top<br>Beitean                                                                                                                                                                 | . Sandstone<br>12:09:45                                                 | Elapsed time<br>(hours)          | 0010                 | 0,00         | 10.0                 | 10.0     | 10.0                 | 10:0         | 10.0     | 0.02     | 0.02                 | 10.0     | 0.02         | 0.02     | 0.0      | (0))     | 0.03   | 10.0         | 0.03     | 0.03     | 300      | 10.0     | 30       |
| June         | Clicat<br>Site<br>Project No.<br>Horehole               |                                                                        | Borcholc diameter<br>Borcholc radius<br>Test accion location<br>Length of test interval<br>Gauge Depth<br>Static Water Level                                                   | General Lithology<br>Sandtume/Gypaiferous Sandtume<br>Start Time 12:09: | Clock<br>Time                    | 12:09:45<br>12:09:49 | 12.09:52     | 12:10.03<br>12:10.07 | 12.10.10 | 12:10:17<br>12:10:21 | 12.10.28     | 12:10:32 | 12.10.43 | 12:10:46<br>13:10:46 | 12:10:57 | 12.11.01     | 12.11.04 | 12:11:19 | 10.11.21 | 101121 | 12.11.40     | 12:11.44 | 12.11.57 | 12.11.51 | 12 12 02 | 12 12 05 |

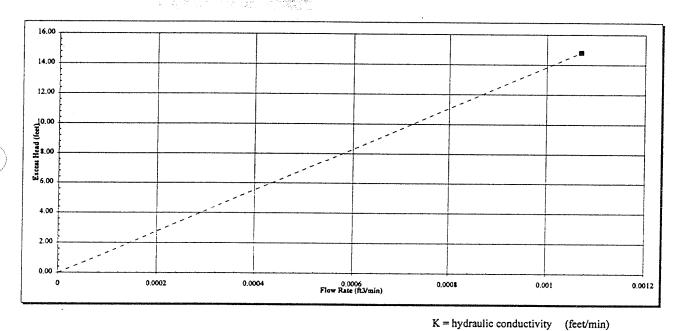

Amer

Golder Associates

25401A CHA, Input Data

| Plot data ı     | ised in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 14.80           | 0.008            |

ł




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| -           |                       |

Borehole254Interval Number1

#### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 14.80           | 0.008         | 0.00107                |
|                 |               |                        |



Q = Flow rate

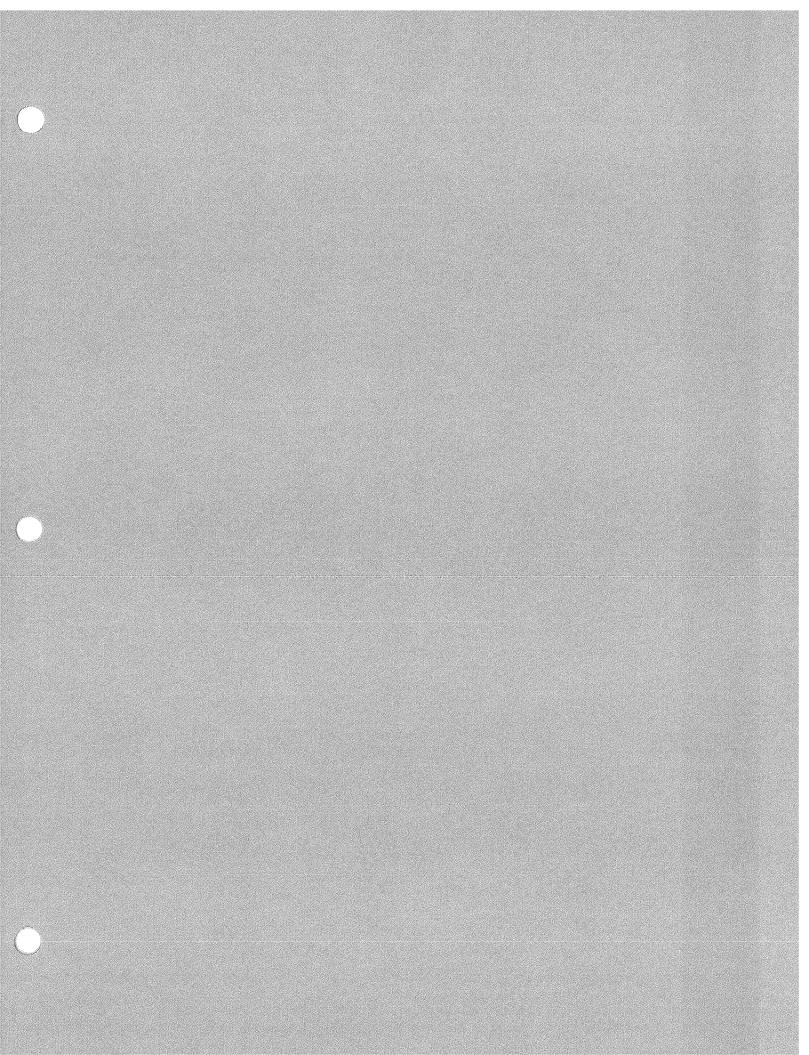
he = Applied head

r = borehole radius

L = length of interval tested (feet)

ft<sup>3</sup>/min feet (ft<sup>3</sup>/min)

(feet)


(feet)

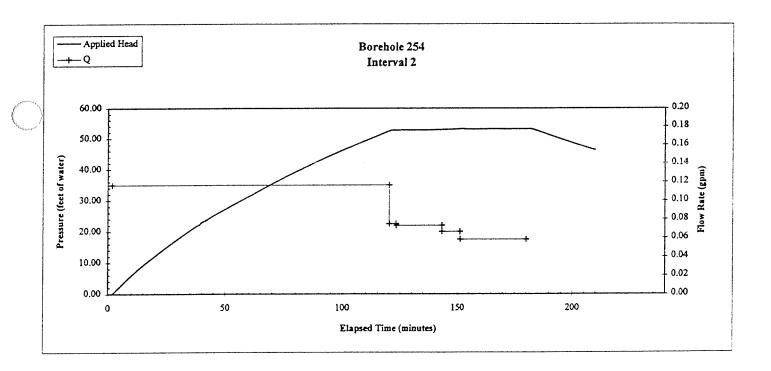
 $K = 1/(2\pi L) x (Q/h_e) x \ln (L/r)$ 

#### Range of hydraulic conductivity

| K = | 1.2E-06 cm/s     | Q =  | 0.001 |
|-----|------------------|------|-------|
|     | 2.3E-06 feet/min | h. = | 14.80 |

25401A.CHA, K calculation



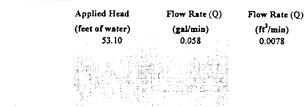

| 0(116/2-616                                 |                                                                                                                 |                                                                                                                                                                                                | Average Q<br>(gal/min)           |                      |                      | 00.0                | 0.0           | 00.0                 | 0.00                             | 00.00    | 000      | 0.00         | 00:0     | 0.00     | 0.00           | 00.0      | 0.00           | 0.02       | 0.02     | 10.0     | 0.02         | 70.0     | 8.0      | 00.0     | 0.00          |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|----------------------|---------------------|---------------|----------------------|----------------------------------|----------|----------|--------------|----------|----------|----------------|-----------|----------------|------------|----------|----------|--------------|----------|----------|----------|---------------|
| $\left(\begin{array}{c} \end{array}\right)$ |                                                                                                                 | 8<br>8<br>1<br>5 Point Movine Averaed                                                                                                                                                          | Δ time A<br>(minutes) (j         |                      |                      | 10.0-               | 10.0          | 10.0-                | 10.0-                            | 10.0     | 000      | 0 00         | 000      | 10.0     | 10.0-          | 10.0-     | 10.0           | 10.0       | 0.07     | 0.13     | 91.0<br>CL 0 | 0 21     | 110      | 0.24     | E2.0          |
|                                             |                                                                                                                 | 286 (S)<br>286 (S)                                                                                                                                                                             | Applied Head<br>(feet of water)  |                      |                      | 00.0                | 000           | 00'0                 | 10.0-                            | 10:0-    | 10.0-    | 10.0         | 10.0-    | 10.0-    | -0.02          | 0.02      | -0.02<br>-0.02 | -0.02      | 10.0-    | 0.02     | 0.0<br>01 0  | 0.16     | 1        | 0.27     | £C.0<br>\$E.0 |
|                                             |                                                                                                                 | True vertical depth calculation:<br>Boltom of interval<br>Boltom of interval<br>Vertical depth of bottom of interval (ft)<br>Vertical depth of bottom of interval (ft)<br>23 Moving Averages   | Average Q<br>(gal/min)           |                      | 0.00                 | 00.0                | 0.00          | 00.0                 | 00:0                             | 00.0     | 0.00     | 0.00         | 00.0     | 0.00     | 0.00           | 000       | 800            | 0.00       | 10.0     | 0.0      | 5 8          | 80       | 0,00     | 00.0     | 000           |
|                                             |                                                                                                                 | True vertical depth calculation:<br>Bottom -<br>Bottom -<br>Bottom -<br>Above -<br>Budow -<br>190,00<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Δ time<br>(mimt)                 |                      | 20 Q                 | 0.0                 | 10.0-<br>0.00 | 8                    | 10.0                             | 10.0     | 10.0-    | 10.0         | 10.0-    | 10'0-    | 0.00           | 0.00      | 10.0           | 10.0-      | 0.02     | 90.0     | 110          | 11.0     | 0.12     | 0.12     | 0.11<br>0.12  |
|                                             |                                                                                                                 | an: T<br>Frval<br>Frval<br>Vertical Depth (ft) H<br>Above 239.56<br>Below 269.56<br>val (ft) 263.57 V<br>val (ft) 263.57 V                                                                     | Applied Head<br>(feet of water)  |                      | 10.0                 | 00'0                | 8.0           | 0.00                 | 10:0-                            | 10:0-    | -0.02    | 10:0-        | 10.9     | 10.0-    | 0.02           | 6.07<br>9 | 0.02           | -0.03      | -0.02    | 0.00     | 01.0         | 0.16     | 0.22     | 0.28     | 8C.0<br>8C.0  |
|                                             | itradds packer<br>ownhole                                                                                       | True vertical depth calculation:<br>Top of interval<br>Hole depth (f) Vertical<br>Above 2000 Above<br>Bdow 270,00 Bdow<br>Vertical depth of top of interval (f)                                |                                  |                      |                      |                     |               |                      | 4. 1991.<br>1. 1992.<br>1. 1992. |          |          |              | - 1      |          |                |           |                |            |          |          |              |          |          |          |               |
|                                             | Test Type:<br>Constant bead, Straddle packer<br>Gauge located downhole                                          | True vertical depth calculation:<br>Top af laterv<br>V V<br>Above 260.00 AL<br>Below 200.00 B                                                                                                  | Q<br>(gal/min)                   |                      |                      |                     |               |                      |                                  |          |          |              |          |          |                |           |                |            |          |          |              |          |          |          |               |
|                                             |                                                                                                                 |                                                                                                                                                                                                | Applied Head<br>(feet of water)  | 0.01                 | 10'0<br>00'0         | 0.0                 |               |                      | 10.0-                            |          | -0.02    | 6:05<br>0:01 |          |          | 0.02           |           |                |            | 0.01     |          |              | 0.15     |          |          | (C.0<br>4(.0  |
|                                             |                                                                                                                 | inchea<br>Fox<br>fox below top of caaing<br>fox<br>fox<br>fox<br>below top of caaing<br>foxt below top of caaing                                                                               | Measured Head<br>(feet of water) | 0.01<br>0.02         | 10'0                 | 0.0                 | 000           | 0.00                 | 10.0-                            | 10.0-    | -0.02    | -0.02        | 10:0-    | 10.0-    | 20.0-<br>C0.0- | 0.02      | -0.02          | £0.0-      | [0'0'    | 0.05     | 0.11         | 0.15     | 0.22     | 0.28     | 81.0<br>90.0  |
|                                             | VCSSA                                                                                                           | 3.78<br>0.16<br>263.96<br>288.85<br>24.89<br>24.89<br>157.87<br>153.68                                                                                                                         | Elapsed time<br>(minutes)        | 0<br>90.0            | 0.12<br>0.18         | 0.0<br>X10          | 0.42          | 0.54                 | 0.72                             | 0.78     | 10       | <u>8</u> 1   | 1.26     | 1.26     | 7              | Ŧ         | 1.56           | 1.62       | 101      | 1.86     | 36.1         | 3.04     | 2.1      | 111      | 134           |
|                                             | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>254<br>25<br>2<br>2<br>2<br>2<br>0<br>2<br>0<br>0<br>5<br>0 | Tup<br>Bottom<br>I Sandatone<br>I 5:56:00                                                                                                                                                      | Elapsed time<br>(hours)          | 00.0                 | 00) A                | 10:0                | 10.0          | 10.0                 | 10.0                             | 10.0     | 10.0     | 0.02         | 0.02     | 0.02     | 0.02           | 0.02      | 0.03           | <b>600</b> | 60 D     | 0.03     | (0.0         | 10.0     | 10.0     | 10.0     | 1.0           |
| Tours                                       | Client<br>Site<br>Project No.<br>Borehole<br>Test Number<br>Test Date                                           | Borchole diameter<br>Borchole radius<br>Test section location Tag<br>Langth of test interval<br>Gauge Depth<br>Gauge Depth<br>Static Water Level<br>Ceneral Lithology<br>Start Time 15:563     | Clock<br>Time                    | 15.36,00<br>15.36,04 | 15.56.07<br>13.56.11 | 13.56.11<br>13.5622 | 15.56.23      | 15.56.32<br>14-55-32 | 15.56:41                         | 15.36.47 | 15,56,50 | 15.57:12     | 15:57:16 | 15.57.16 | 15,57,23       | 15:37:26  | 15.57.34       | 15.57:37   | 15:57:48 | 15:57:52 | 42.72.21     | 15.58.02 | 15.38.06 | 15.58.13 | 15.58.20      |

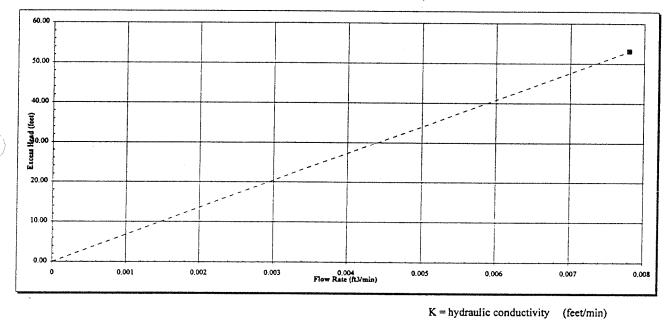
T/June

**Goldor Associatos** 

25402A CHA, liqut Data

Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)53.100.058





| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |
| Borehole    | 254                   |

Interval Number

### Plot data

2





 $K = 1/(2\pi L) x (Q/h_e) x \ln (L/r)$ 

#### Range of hydraulic conductivity

| K = | 2.4E-06 cm/s     | Q =              | 0.008 | ft³/min |
|-----|------------------|------------------|-------|---------|
|     | 4.8E-06 feet/min | h <sub>e</sub> = | 53.10 | feet    |

Q = Flow rate

he = Applied head

r = borehole radius

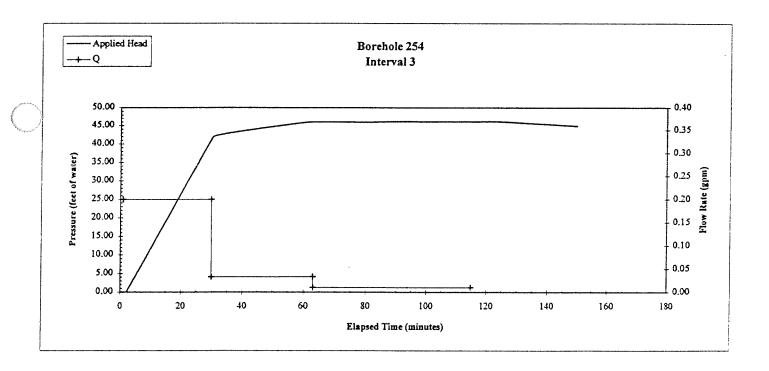
L = length of interval tested (feet)

(ft<sup>3</sup>/min)

(feet)

(feet)

| 07114/2-1H |                                                  |                                                                        |                                      |                                                              |                                        |                                           |                                | 3                       | Average Q<br>(sal/min)           |                |                    |         | 00.00   | 000                | 000             | 000     | 00:0               | 10.0    | 0.04    | 90.0                | 00.0            | 0.00      | 0.00    | <b>0</b> 00 | 000<br>0000        | 0,00    | 00.0    | 0.0             | 0.0                | 0000    | 0.0          | 00.00        | 000    | 85      |
|------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------|-------------------------|----------------------------------|----------------|--------------------|---------|---------|--------------------|-----------------|---------|--------------------|---------|---------|---------------------|-----------------|-----------|---------|-------------|--------------------|---------|---------|-----------------|--------------------|---------|--------------|--------------|--------|---------|
|            |                                                  |                                                                        |                                      |                                                              |                                        |                                           |                                | 5 Point Moving Averages | Δ time<br>(minutes)              |                |                    |         | 0.00    | 8.0                | 8               | 0.00    | 10.0               | 10'0-   | 10:0-   | 10.0-               | 0.0             | 10.0-     | 0.00    | 000         | 0.00               | 0.00    | 0.00    | 0.00            | 0.02               | 91.0    | 12.0         | 0.36         | 070    | 2       |
|            |                                                  |                                                                        |                                      | l Interval<br>Vertical Depth (ft)                            | 259.96<br>269.96                       | 18.092                                    |                                | 5 Point M               | Applied Head<br>(feet of water)  |                |                    |         | 0.00    | 90 G<br>00 G       | 000             | 0.00    | 8.9                | 10.0-   | 10:0-   | 10.0-               | 10:0-           | 10:0-     | 10:0-   |             | 10'0               | 10.0-   | 10.0-   | 10.0-           | 10.0               | 90.0    | 60.0         | 0.17         | 0.26   |         |
|            |                                                  |                                                                        | calculation:                         | 3                                                            | 260.00 Above<br>270.00 Below           | Vertical depth of bottom of interval (ft) |                                | 5                       | Average Q<br>(gal/min)           | I              |                    | 0.00    | 0000    | 00.0               | 00'0            | 010     | 0.0                | 0.07    | 0.07    | 00.0                | 0.00            | 0.00      | 0000    | 0.00        | 00.00              | 0.00    | 0.0     | 000             | 00.0               | 0.0     | 0.00         | 0.00         | 0.00   |         |
|            |                                                  |                                                                        | True vertical deptà calculation:     | Hole depth (ft)                                              | Abore<br>Below                         | artical depth of b                        |                                | 3 Point Moving Averages | A time<br>(mins)                 |                |                    | 0.0     | 8.6     | 8.0                | 0.0             | 8.6     | 10.0               | 10:0-   | 10:0-   | 8.0                 | 10.0-           | 00.0<br>0 |         | 80          | 0,00               | 0.0     | 8.8     | 8               | 0.02               | 0.0     | <b>0</b> .14 | 0.18         | 6.23   |         |
|            |                                                  |                                                                        | Ę                                    | ;                                                            | 239.57                                 | 238.95 Ve                                 |                                | 3 Point                 | Applied Head<br>(feet of water)  |                |                    | 00:00   | 0.0     | 00.0               | 0.00            | 0.00    | 00.0               | 10.0-   | 10:0    | 10.0                | 10.0-           | 10.0-     | 10.0-   | 10.0-       | 10.0-              | 10.0    | 10.0    | 0.02            | 10.0-              | 0.02    | 0.06         | 0.16         | 0.26   |         |
|            |                                                  | iraddie packer<br>wnbole                                               | th calculation:                      |                                                              | 240,00 Below                           | Vertical deptà of top of interval (ft)    |                                |                         | IY<br>I                          |                |                    |         |         |                    |                 |         |                    |         |         |                     |                 |           |         |             |                    |         |         |                 |                    |         |              |              |        |         |
| $\bigcirc$ |                                                  | Test Type:<br>Cosstant bead, Straddle packer<br>Gauge located downhole | True vertical depth calculation:     | Hole depth (N)                                               | Below                                  | ertical deptà of                          |                                |                         | Q<br>(ali <sup>m</sup> in)       | and the second |                    |         |         |                    |                 |         |                    |         | 3       |                     |                 |           |         |             |                    |         |         |                 |                    |         |              |              |        |         |
|            |                                                  | 200                                                                    | Ĩ                                    | H                                                            | čă                                     | >                                         |                                |                         | Applied Head<br>(feet of water)  | 10.0           | 0010               | 09.0    | 00.0    | 0.00               | 00.0            |         |                    | 10.0    |         |                     |                 | 10.0      |         |             |                    | 10.0    |         |                 |                    |         | 0.0          |              | 0.26   |         |
|            |                                                  |                                                                        | inches                               | reet<br>feet below top of casing<br>feet below top of casing | foot<br>foot below top of casing       | feet below top of casing                  |                                |                         | Measured Head<br>(feet of water) | 10:0           | 0.00               | 0.00    | 000     | 0.00               | 0.00            | 000     | 0.00               | 10:0-   | 10.0-   | 10.0-               | 10.0            | 10.0-     | 10.0-   | 10.0-       | 10:0-              | 10 G    | -0.02   | -0.02           | -0.02              | 10.0    | 0.07         | 21.0<br>94.0 | 97.0   |         |
|            | ICSSA                                            |                                                                        | 3.78                                 | 238.98                                                       | 24.87                                  | 152,53                                    |                                |                         | Elapsed time<br>(minutea)        | •              | 90:0               | 0.12    | 0.24    | 0.36               | 170<br>170      | 9.0     | 0.72               | 110     | 0.96    | 1.02                | 1.14            | 41        | 1.5     | 51          | 1.62               | 891     | 1.74    | 1.86            | 86.1               | 2.04    | 17           | 2.22         |        |         |
|            | Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691 | 254<br>3<br>27-Oct-95                                                  |                                      | Top<br>Bottom                                                |                                        |                                           |                                | 8:05:11                 | Elapsed time<br>(hours)          | 0.00           | 00.0               | 000     | 00.00   | 10.0               | 100             | 10.0    | 10.0               | 10.0    | 0.02    | 0.02                | 20.0            | 0.02      | 0.03    | [0]0        | 0.03               | 0.03    | 0.03    | 60.03           | 0.0<br>20.0        | 0.03    | 5.0<br>100   | 10.0         |        |         |
| 13 Well    | Clieat N<br>Site No. 9                           | Borchole 25<br>Test Number 3<br>Test Date 27                           | Borchole diameter<br>Borchole radius | Test section location                                        | Length of test interval<br>Gauge Depth | Static Water Level                        | General Lithology<br>Sanditone | Start Time              | Clock F<br>Time                  | 8.03:11        | 8.05.15<br>8.05.15 | 8.05.22 | B.05:25 | 8.05/33<br>2.05/34 | 05.50. <b>3</b> | E.03.47 | 8.05.54<br># 05.54 | 10,00.8 | B.06;09 | 11.06:12<br>• 64:10 | <b>1</b> .06:23 | N.06:37   | 14:00.8 | B.06.41     | 8.00.52<br>8.06.52 | 1.06:52 | 8.06;55 | <b>B</b> :07.03 | 8.07.10<br># 67-11 | 1.07.17 | 8:07:24      | 8.07:28      | 107-11 | 10.10.4 |


**Golder Associatos** 

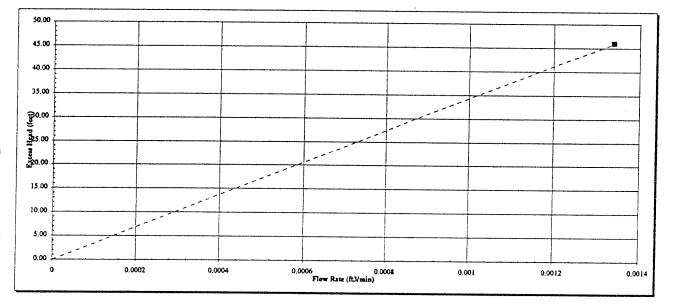
-

25403A.CHA, liqui Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 46.00           | 0.010            |

í



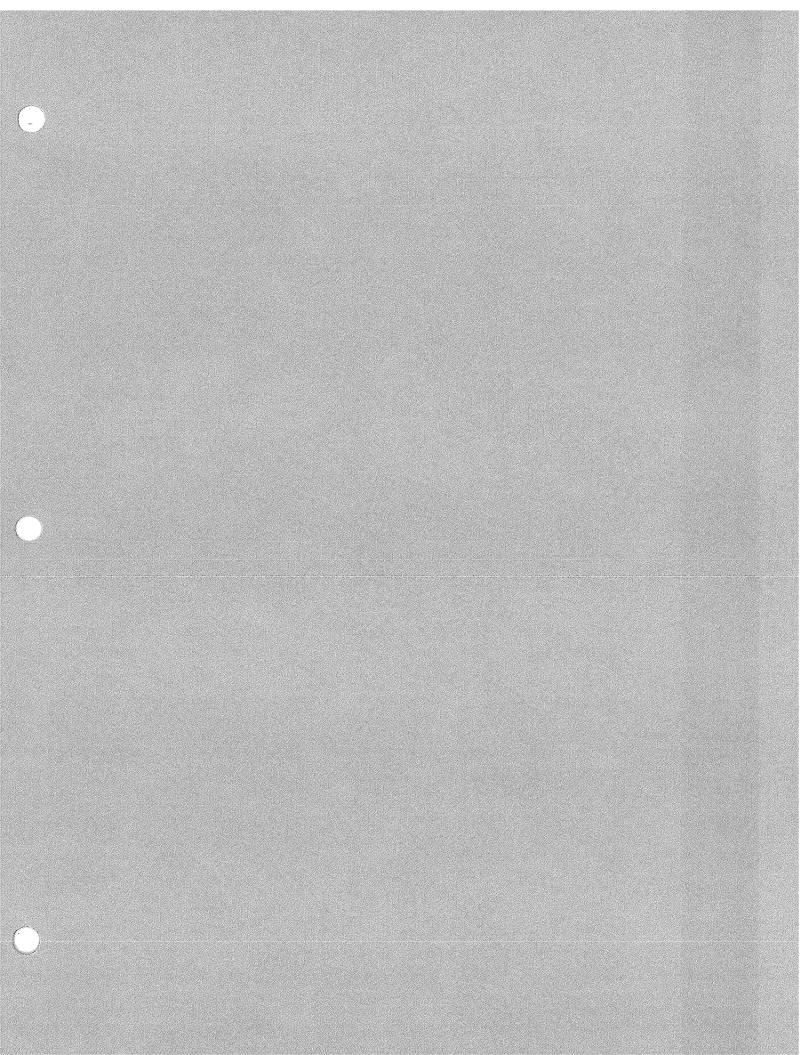

(

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             | <b></b>               |

Borehole254Interval Number3

#### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 46.00           | 0.010         | 0.00134                |
|                 |               |                        |

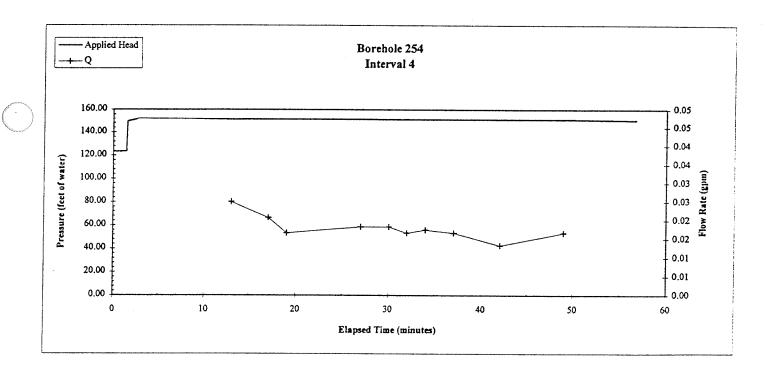



| K = 1/(    | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Range of l | hydraulic conductivity                      |                                                                                                                          |                                                                    |
| K =        | 4.8E-07 cm/s                                | $0 = 0.001 e^{3/2}$                                                                                                      |                                                                    |

| <br>    | ciii/ 3  |
|---------|----------|
| 9.4E-07 | feet/min |

 $Q = 0.001 \text{ ft}^3/\text{min}$  $h_e = 46.00 \text{ feet}$ 

("



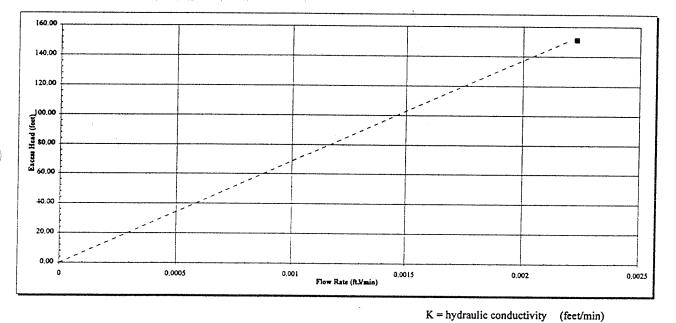

| 0711612-174                                                        |                                                                                                                                                                                              | 3                                            | Average Q<br>(gal/min)           |                                         | 8 8 8              | <b>00</b> 0                    | 00.0              | 0010                      | 8 8 8               | 000                           | 0.0<br>00.0        | 00.00                      | 0000               | 0.00               | 0.00             | 0.00             | 00.0                         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------|--------------------|--------------------------------|-------------------|---------------------------|---------------------|-------------------------------|--------------------|----------------------------|--------------------|--------------------|------------------|------------------|------------------------------|
|                                                                    |                                                                                                                                                                                              | 5 Point Moving Averages                      | ∆ time<br>(minutes)              |                                         | 10 0               | 10.0                           | 0.01<br>0.01      | 0.04<br>0.05              | 10 0<br>10 0        | 0.05                          | 18.22<br>18.72     | 27.92<br>28.45             | 282<br>113         | 0.73               | 11.0-<br>10.0-   | -0.03            | 10'0-                        |
|                                                                    | epth (f)<br>229,97<br>239,97<br>234,95                                                                                                                                                       | 5 Point M                                    | Applied Head<br>(feet of water)  |                                         | 97 TZ              | 76.451<br>76.451               | 76.021<br>BC.021  | 10.021<br>90.021<br>94.00 | 13 EL               | 123.45<br>123.45              | 128.65<br>134.15   | 139.73<br>145.42           |                    | 66.1C1             | 152.13<br>152.10 | 152.09           | 152.0 <del>9</del><br>152.09 |
|                                                                    | True vertical depth calculation:<br>Bottom of interval<br>Hole depth (h) Vertical Depth (f)<br>Above 230.00 Above 22<br>Above 240.00 Below 23<br>Vertical depth of bottom of interval (f) 23 | 2                                            | Average Q<br>(gal/min)           | 8 8                                     | 8 8 8              | 0.00                           | 0.00              | 8°0<br>8'0<br>8           | 0.0<br>0.0          | 0.00                          | 0.00               | 00'00<br>00'0              | 8 8 8              | 0.00               | 00.0             | 0.0              | 0.0                          |
|                                                                    | Tree vertical depth calculation:<br>Bottom e<br>Hole depth (ft)<br>Above 230,00<br>Bolow 240,00<br>Vertical depth of bottom of inte                                                          | 3 Polat Moving Averages                      | Δ time<br>(mins)                 | 8.6                                     | 00'0<br>10'0       | 0.0<br>0.0                     | 10.0              | 10 <sup>0</sup> 0         | 0.02<br>0.05        | 0.0<br>0.0                    | 10.0<br>25.22      | 27.50<br>2.00              |                    | 8                  | 6 G              | 10.0-            | 10.0                         |
|                                                                    | eer To To To<br>all To<br>Above 2099,97 and<br>Below 119,97 and<br>Mal (ft) 214,06 Vy                                                                                                        | 3 Point                                      | Applied Head<br>(feet of water)  | 90.00<br>91.00                          | 80.021<br>80.021   | 16.021<br>16.021               |                   | - 60'EE                   | 123.42<br>123.44    | 123.45<br>123.46              | 123.47<br>132.10   | 141.27<br>150.58<br>151.55 | 151.02<br>151.02   | 1121               | 152.11           | 152.09           | 152.09                       |
|                                                                    | 3 3 3 6 6                                                                                                                                                                                    |                                              |                                  |                                         |                    |                                |                   |                           |                     |                               |                    |                            |                    |                    |                  |                  |                              |
| fai Type:                                                          | Constant based. Straddle pa<br>Gauge located dowahala<br>True vertical depth calcular<br>Hole depth (ft)<br>Above 210.00<br>Béow 220.0<br>Vertical depth of top of late                      |                                              | Q<br>(gal/min)                   |                                         |                    |                                |                   |                           |                     |                               |                    |                            |                    |                    |                  |                  |                              |
|                                                                    |                                                                                                                                                                                              |                                              | Applied Head<br>(feet of water)  | 80.001<br>80.001<br>80.001<br>80.001    |                    | 70.021<br>20.021               |                   |                           |                     |                               |                    | 12.091<br>12.021<br>15.131 | 151.92             | 152.13<br>152.13   | 132.10           | 152.09           | 151.04                       |
|                                                                    | inchea<br>foot<br>foot below top of casing<br>foot below top of casing<br>foot below top of casing<br>foot below top of casing                                                               |                                              | Measured Head<br>(feet of water) | 80.021<br>80.021<br>80.021<br>80.021    | 50,021<br>36,021   | 76.621<br>86.621<br>77.621     | 70.021<br>10.021  | 90.051<br>19.051          | 123.42<br>123.43    | 123.46<br>123.46              | 123.47             | 150.97<br>151.38           | 151.92<br>152.20   | 152.13<br>152.11   | 152.10           | 152.09<br>152.09 | 152.08                       |
| ACSSA                                                              | 3.78<br>0.16<br>214.11<br>238.98<br>24.87<br>157.87<br>157.87                                                                                                                                |                                              | Elapsed time<br>(minutes)        | 0<br>0.06<br>0.12<br>0.12               | 0.36               | 0.54<br>0.54<br>0.6            | 0.78<br>0.78      | 0.84<br>0.96              | 101                 | <u> </u>                      | 1 1 1              | 17                         | 2.64               | 2.76<br>2.76       | 287              | 3                | 2.94                         |
| Morrison-Maierle/CSSA<br>Miner Flat<br>943-27691<br>254<br>4 (r)   | 1 (v)<br>27-Oct-95<br>Top<br>Bottom                                                                                                                                                          | 9:37:59                                      | Elapsed time<br>(hours)          | 000<br>000<br>000                       | 10.0               | 10.0                           | 10.0              | 0.01<br>0.02              | 0.02                | 70 D                          | 20.0               | 10.0                       | 0.04<br>20.0       | 0.05<br>0.05       | 0.05             | 0.05             | 0.03                         |
| 7/Juwe<br>Client<br>Site<br>Project No.<br>Borebole<br>Teat Number |                                                                                                                                                                                              | General Lithology<br>Sandatone<br>Start Time | Clock<br>Time                    | 9656.9<br>60,06.9<br>80,86.9<br>01,06.9 | 9:38:17<br>9:38:28 | 9.38.24<br>16.38.29<br>9.38.05 | 9.38.42<br>6.46.9 | 9,38,49<br>9,38,57        | 90,90,9<br>91,90,07 | 81.45.4<br>31.45.9<br>52.95 V | 22.4C.4<br>EE 4E 4 | 9.40.34                    | 9.40.37<br>9.40.41 | 9:40:45<br>9:40.45 | 9.40.48          | 9:40:55          | 9:40.55                      |

**Golder Associated** 

254043A.CHA, liqui Data

# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)151.000.017




(<sup>er</sup>

| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 254                   |

Interval Number 4 (r)

#### Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ff <sup>3</sup> /min) |
| 151.00          | 0.017         | 0.0022                 |
|                 |               |                        |



 $K = 1/(2\pi L) \times (Q/h_e) \times \ln (L/r)$ 

# Range of hydraulic conductivity

| K = | 2.4E-07 cm/s     | Q =              | 0.002  | ft³/min |
|-----|------------------|------------------|--------|---------|
|     | 4.7E-07 feet/min | h <sub>e</sub> = | 151.00 | feet    |

Q = Flow rate

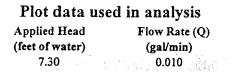
he = Applied head

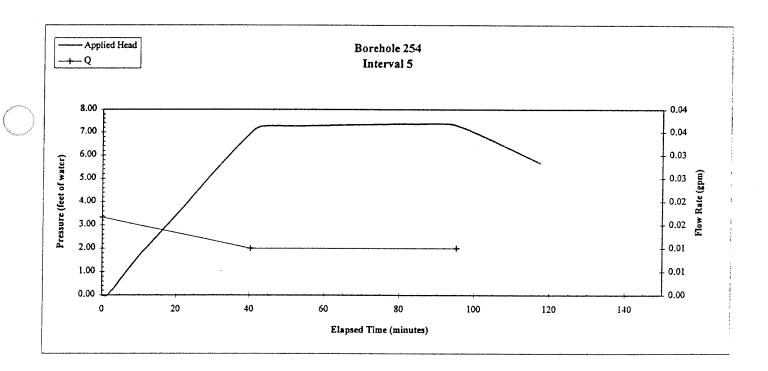
r = borehole radius

L = length of interval tested (feet)

(ft<sup>3</sup>/min)

(feet)


(feet)



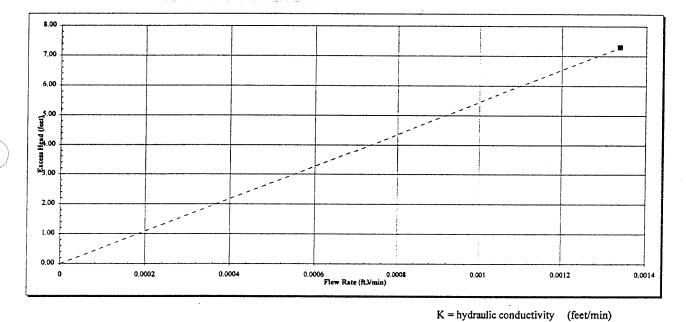

| 0(1.1912-646 |                                                                                                                                                    |                                                                                                                          |                                              | Average Q<br>(gal/min)           |          |                      | 00.0           | 0.00             | 800      | 000           | 0 00            | 0000           | 800         | 0.00                 | 0.00              | 0.00         | 0.00     | 0.0      | 000      | 000   | 0.00     | 0.0        | 0.00     | 0.00         | 000      | 0.00     | 00.0     | 0000     | 00.0     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------|----------------------|----------------|------------------|----------|---------------|-----------------|----------------|-------------|----------------------|-------------------|--------------|----------|----------|----------|-------|----------|------------|----------|--------------|----------|----------|----------|----------|----------|
| $\bigcirc$   |                                                                                                                                                    |                                                                                                                          | 5 Point Moving Averages                      | ∆ time A<br>(minutes) (          |          |                      | 10.0-          | 10.0-            | 10.0     | 100-          | -0.02           | 10.0           | 0.02        | -0.01                | 00.0              | 10.0         | 0.02     | E0:0     | 10.0     | (0.0  | £0,0     | 10.0       | 0.05     | 90.0         | 10.0     | 10.0     | 100      | 10.0     | 0.07     |
|              |                                                                                                                                                    | pth (ft)<br>209.97<br>219.97<br>214.04                                                                                   | 5 Point Mc                                   | Applied Head<br>(feet of water)  |          |                      | 10.0-          | 40.07<br>20.02   | 100      | -0.02         | 6.0             | (0.0)<br>10 cl | 10.0        | <b>10</b> .0-        | 10.01             | <b>1</b> 0.0 | £0.0-    | 5 F      | 10:0-    | 0.00  | 0.00     | 10'0       | 0.02     | 0.04<br>2.02 | c0.0     | 10.0     | <b>6</b> |          | 110      |
|              | alculation:<br>Botona of internet                                                                                                                  | Vertical Depth (ft)<br>210.00 Above 201<br>220.00 Balow 211<br>(000 of laterval (ft) 214                                 | -                                            | Average Q<br>(gal/min)           |          | 0.00                 | 0.00           | 0.00             | 0.0      | 0.00          | 0.0             | 00.0<br>50     | 00.0        | 00.00                | 0'00              | 0.0          | 8 8      | 80       | 000      | 0.00  | 00'00    | 0.00       | 00'0     | 0.00         |          |          |          | 00.0     | 0.0      |
|              | True vertical depth calculation:<br>Barrae                                                                                                         | Hode depth (R) Vertic.<br>Above 210.00 Above<br>Below 210.00 Bulow<br>Vertical depth of bottom of interval (1)           | 3 Point Moving Averages                      | A time<br>(mins)                 |          | 10.0-                | 10.0           | 8.8              | 0.01     | 10.0-         | 8.0             | 1017           |             | 10.0-                | -0.01             | 10.0         | 50 G     | 100      | 2010     | 20.0  | 0.02     | 0.02       | 3        | 000<br>700   |          |          | 100      | 0.01     | 10.0     |
|              |                                                                                                                                                    | Vertical Depth (n) H<br>Above 179 <b>-98</b> (m)<br>Babow 189,97 (m)<br>Val (n) 189.22 V                                 | 3 Point                                      | Applied Head<br>(feet of water)  |          | 10:0-                | 10:0           | 6 7 <del>7</del> | -0.02    | 0.02          | 0.03            | 0.07           |             | 10:0-                | <b>1</b> 0:0-     | <b>7</b> 00  |          | 10.0     | 10:0-    | 10:0- | 0.0      | 10.0       | 0.02     |              | 0.07     | 900      | 110      |          | 41'0     |
| a conversa   | Teit Type:<br>Cousiant band, Straddle packer<br>Gauge located downhole<br>True vertical depth calculation:<br>True vertical depth. Too of interval | Hole depth (f) Vertien<br>Above 1840.00 Above<br>Bdow 1900.00 Balow<br>Vertient depth of top of interval (f)             |                                              | _                                |          |                      |                |                  |          |               |                 |                | -<br>-<br>  |                      |                   |              |          |          |          |       |          |            |          |              |          |          |          |          |          |
| ( )          | Test Type:<br>Constant bead, Straddle p<br>Gauge located downhole<br>True vertical depth catcul<br>True vertical depth catcul                      | Hole depta (f)<br>Above<br>Below<br>Vertical depta o                                                                     |                                              | Q<br>(gal/min)                   | 0.02     |                      |                |                  |          |               |                 |                |             |                      |                   |              |          |          |          |       |          |            |          |              |          |          |          |          |          |
|              |                                                                                                                                                    |                                                                                                                          |                                              | Applied Head<br>(feet of water)  | 10.04    | 10.0                 | 10.04          |                  |          | 10.0-<br>10.0 |                 |                |             |                      | <b>1</b> 0 - 0    |              |          |          |          |       |          | 10.0       |          |              |          |          |          |          | 0.14     |
|              | inches<br>Foot                                                                                                                                     | foct below top of cauling<br>foct below top of cauling<br>foct<br>foct below top of cauling<br>foct below top of cauling |                                              | Measured Head<br>(feet of water) | 10.0-    | 10 0                 | 10 07<br>70 07 | 0.0              | -0.02    | 60 Q          | 6. <del>9</del> | 2.9            | <b>0</b> .0 | <b>2</b> 0.0-        | -0.0 <del>0</del> | 5 7          | 6.0      | -0.02    | 10.0-    | 0,00  | 000      | 10.0       | 70:0     | 0.05         | 0.04     | 0.09     | 0.11     | 613      | 0.14     |
|              | a/CSSA<br>3.78<br>0.16                                                                                                                             | 189.25<br>214.11<br>24.86<br>157.87<br>152.53                                                                            |                                              | Elapsed time<br>(minutes)        | 0<br>(0  | 1.9                  | 0.24           | 97:0             | 0.42     | 0.54          | 0.72            | 0.78           | 6.84        | 80                   | 701               | 1            | 1.26     | 86.1     | 1.44     | 2     | 1.62     | 1.0        | 1.86     | 16.1         | 2.04     | 2.1      | 111      | 2.28     | HC2      |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>254<br>5<br>17-Oct-95<br>31                                                                    | Top<br>Bellom                                                                                                            | 13:53:44                                     | Elapsed time<br>(hours)          | 00.0     | <b>3</b><br>0        | 00.0           | 10.0             | 10.0     | 10.0          | 10.0            | 10.0           | 10.0        | 0.02                 | 700               | 0.02         | 0.02     | 0.02     | 0.02     | 0.03  | 60 C     | 600<br>600 | 0.03     | 0.03         | 0.03     | 10.0     | 10 0     | 10.0     | 10:01    |
| 730xx        |                                                                                                                                                    | ret ection location<br>Length of test interval<br>Gauge Depth<br>Static Water Level                                      | General Lithology<br>Sandstone<br>Start Time | Clock<br>Time                    | 11.01.01 | 15:65:01<br>35:02:01 | 12.53.51       | 13:54:06         | 13.54.09 | 1354.20       | 13:54:27        | 10.401         | 10.54:34    | 20-00-00<br>20-00-00 | 13:4:31           | 13.34.56     | 13:55.00 | 13:55:07 | 11:55:10 | 13511 | 17.65.11 | 1135.01    | 13:35:36 | 11:35:43     | 13:35:46 | 13:33:50 | 13:35:01 | 10.56.01 | 13,36,04 |

**Ouldor Associates** 

25405A CIEA, Equil Data



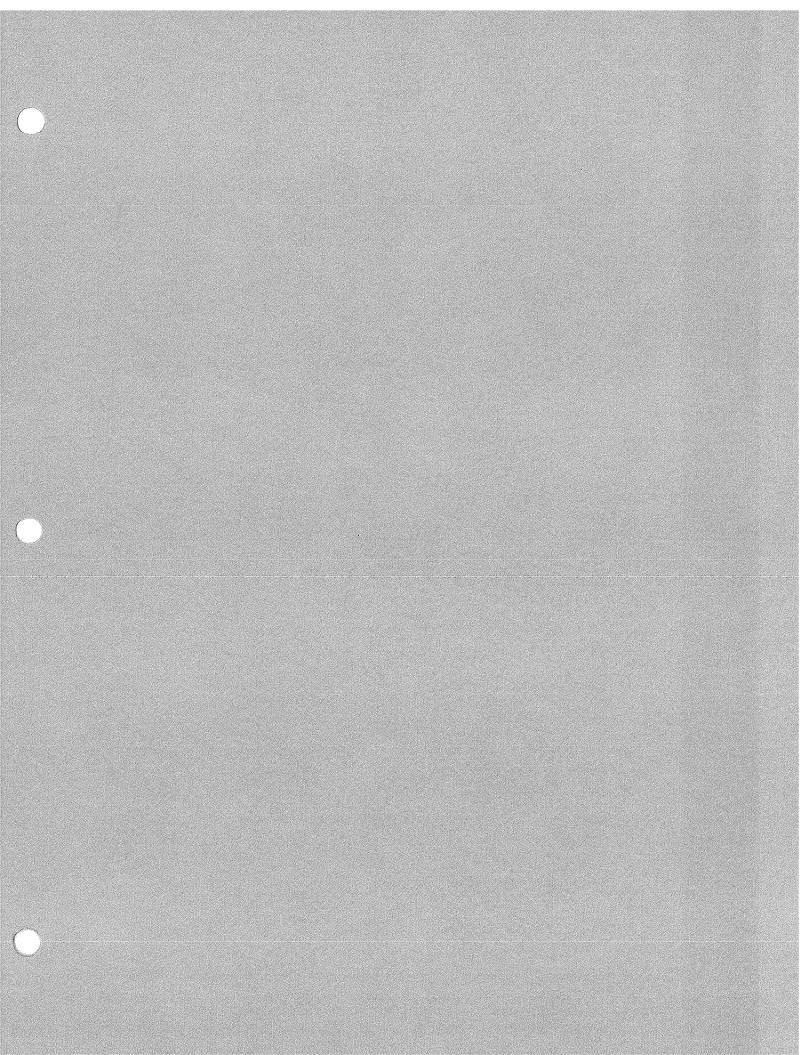



(\_\_\_\_\_

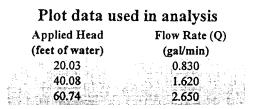
| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole254Interval Number5

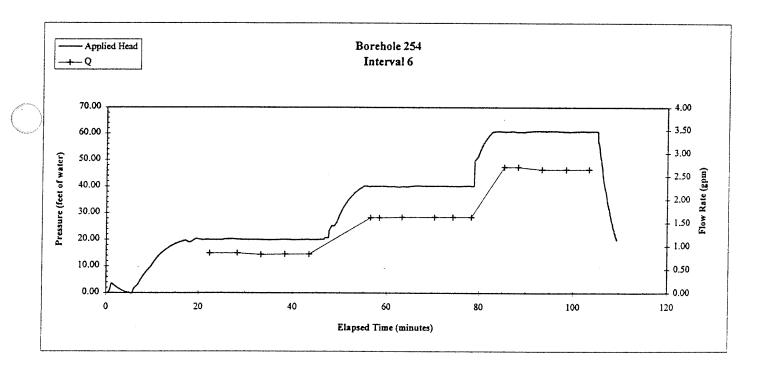
### Plot data


| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 7.30            | 0.010         | 0.00134                |
|                 |               |                        |




| K = 1/(    | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|
| Range of l | hydraulic conductivity                      |                                                                                            |                                                      |
| K =        | 3.0E-06 cm/s                                | $Q = 0.001 \text{ ft}^3/\text{min}$                                                        |                                                      |

5.9E-06 feet/min


 $h_e = 7.30$  feet

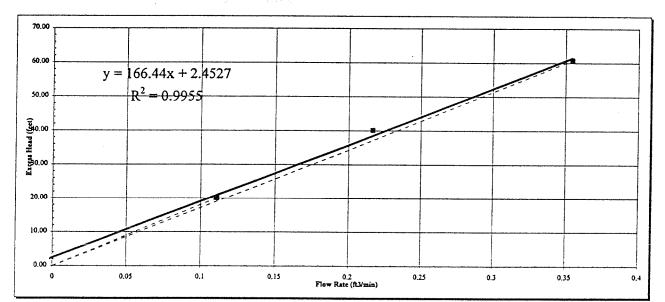


| 0(1)1475-144                        |                                                                                                            |                                                                                                                                                             |                                              | Average Q<br>(gal/min)           |                                                                    | 0.00                   | 00.0                 | 0.00         | 8 8 8        | 000         | 0.00                 | <b>8</b> .0 | 000          | 00.0         | 00.0     | 0.00         | 0000        | 00.0         | 0.00     | 00:0    | 0.0          | 0.00         | 8                            |                           |
|-------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|--------------------------------------------------------------------|------------------------|----------------------|--------------|--------------|-------------|----------------------|-------------|--------------|--------------|----------|--------------|-------------|--------------|----------|---------|--------------|--------------|------------------------------|---------------------------|
| $\bigcirc$                          |                                                                                                            |                                                                                                                                                             | 5 Point Moving Averages                      | Δ time<br>(minutes)              |                                                                    | -0.02<br>0.19          | 0.39<br>0.69         | 0.97         | 1 5 5        | 51          | 2.27                 | 11 O        | 9.9          | <b>1</b> 4.0 | C4-77    | -0.48        | 4<br>9<br>9 | -0.47        | 4<br>2   | 9 9 9   | 110          | <b>7</b> 9   | <del>2</del><br><del>7</del> |                           |
|                                     |                                                                                                            | epth (A)<br>179.98<br>189.97<br>184.91                                                                                                                      | 5 Point M                                    | Applied Head<br>(feet of water)  |                                                                    | <b>2</b> 0.0<br>70.0   | 0.03<br>0.17         | 0.36<br>0.65 | 66-0         | 2.01        | 1.02                 | 27.C        | 771          | 92.6         | 3.17     | 3.05         | 2.80        | 2.69         | 2.57     | 1.40    | 124          | 212          |                              |                           |
|                                     | . calculation:                                                                                             | Bottom of interval<br>Hole depth (ft) Vertical Depth (ft)<br>Above 180.00 Above 17<br>Below 190.00 Below 11<br>Vertical depth of bottom of interval (ft) 11 | 52                                           | Average Q<br>(gal/min)           | 00,6                                                               | 00.0                   | 0.0<br>0.0           | 0.0<br>00.0  | 00:0         | 00:0        | 00.0                 | 000         | 0.00         | 0.00         | 0.00     | 0.0          | 0.00        | 0.00         | 00.0     | 0.00    | 0.00         | 0.00         | 8                            |                           |
|                                     | Tree vertical depth calculation:                                                                           | Hole depth (ft)<br>Above<br>Below<br>Vertical depth of b                                                                                                    | 3 Point Moving Averages                      | Δ time<br>(mins)                 | -0.03<br>                                                          | 0.0                    | 600                  | 0.46<br>0.56 | 0.73         |             | 140                  | 51 ja       | 9.16<br>2.1  | 11.04        | 170      | 29           | 7           | -0.24        | 17 P     | , r     | -0.31        | 97.9<br>97.9 | •                            |                           |
|                                     | F                                                                                                          | l Depth (N)<br>139.96<br>149.94 [] []                                                                                                                       |                                              | Applied Head<br>(feet of water)  | -0.01                                                              | <b>30.0</b>            | 20.0-                | 4C.0<br>08:0 | 16.0<br>20.1 | 18.1<br>245 | 133                  | 8-1<br>13-1 | 3.49         | 97.C         | 71.6     | 3.05<br>19 C | 2.80        | 2.68         | 161      | 13      | 1.24         | 2.13<br>2.01 |                              |                           |
|                                     | Teil Type:<br>Coastaat head, Siraddie packer<br>Gauge located domahole<br>True vertical depth calculation: | Top of laterval<br>Hole depth (ft) Vertica<br>Above 160,00 Above<br>Bdow 170,00 Bdow<br>Vertical depth of top of laterval (ft)                              |                                              | Q<br>(gal/mia)                   |                                                                    |                        |                      |              |              |             |                      |             |              |              |          |              |             |              |          |         |              |              |                              | Outdar Associates         |
|                                     | 4034                                                                                                       | ₩ <b>4</b> 8 >                                                                                                                                              |                                              | Applied Head<br>(feet of water)  | 20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20         | 80.0<br>01.0           | 0.12                 |              |              |             | 3,46<br>3.59         |             |              |              |          |              |             |              |          |         |              | 2.13         |                              |                           |
| -                                   | incides<br>ford                                                                                            | rece<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                                        |                                              | Measured Head<br>(feet of water) | 0.00<br>00,00<br>00,00                                             | 8 01 0<br>9 10<br>9 10 | 0.12                 | 09:0         | 4810<br>11.1 | 1.16        | 3.46<br>3.59         | 3.56        | 05.E<br>04.E | 3.29         | 3.17     | 2.93         | 2.81        | 2.68         | 245      | 2.34    | 2.2          | 2.02         |                              |                           |
| IJ/CSSA                             | 3.78<br>A.10                                                                                               | 160,58<br>188,94<br>25,36<br>157,20                                                                                                                         |                                              | Elapsed time<br>(minutes)        | 0<br>0.06<br>0.12<br>0.12                                          | 1.0                    | 0.42                 | 990          | 0.72         | 1.02        | 1.04                 | 2           | 97.1<br>76.1 | 1.44         | 81       | 1.68         | 8.1         | 98-1<br>16-1 | 2.04     | 2.1     |              | 277<br>717   |                              |                           |
| Morrison-Malerie/CSSA<br>Miner Plat | 943-27691<br>254<br>6 (r)<br>27-0ci-95                                                                     | Top<br>Bottom                                                                                                                                               | 11:11:42                                     | Elapsed time<br>(hours)          | 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900 | 10.0                   | 10.0<br>10.0         | 10.0         | 100          | 0.02        | 0.02                 | 0.02        | 0.02         | 0.02         | 0.03     | 0.03         | 0.03        | 60.0         | 0.03     | 10.0    | <b>1</b> 010 | 10.0         |                              |                           |
| 70000<br>Client<br>Site             | Froject No.<br>Borebole<br>Test Number<br>Test Date<br>Borebole ralius                                     | Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level                                                                       | General Lithology<br>Sandaione<br>Start Time | Clock<br>Time                    | 1101.42<br>1111.46<br>1111.49<br>1111.49                           | 11.12.00               | 11:12:07<br>11:12:14 |              |              | 11:12.43    | 11:12:47<br>11:12:50 | 11:12:54    | 10/21/11     | 11:13:02     | 91:01:11 | 11.11.2      | 11:13:30    | IFICH 1      | 11:13,44 | #P(E))1 | 80 AU 11     | 11.14.02     |                              | 234162A ('ILA, hquul Dala |



÷,




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 254                   |

Interval Number

Plot data

6 (r)

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 20.03           | 0.830         | 0.1110                 |
| 40.08           | 1.620         | 0.2166                 |
| 60.74           | 2.650         | 0.3543                 |
|                 |               |                        |
|                 | 4<br>         |                        |



K = hydraulic conductivity

L = length of interval tested (feet)

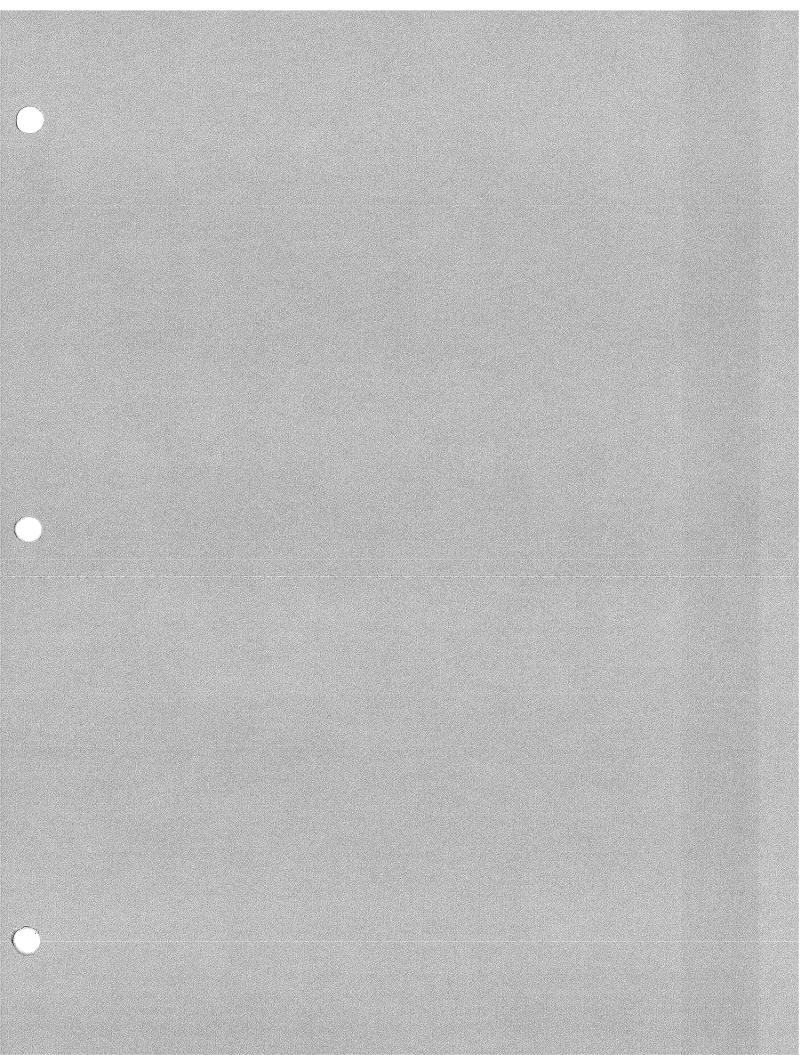
Q = Flow rate

he = Applied head

r = borehole radius

(feet/min)

(ft<sup>3</sup>/min)

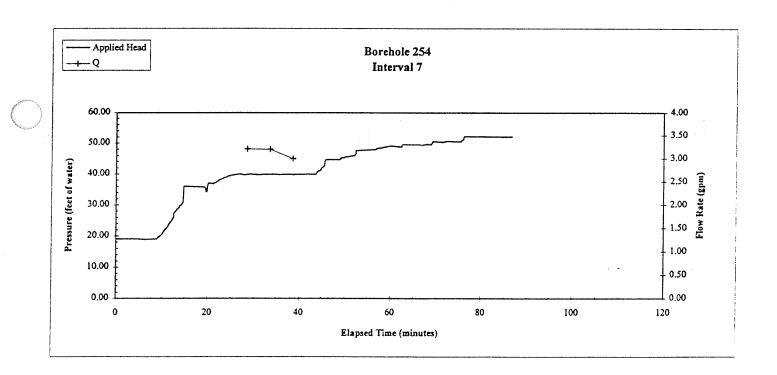

(feet)

(feet)

 $K = 1/(2\pi L) \times (Q/h_e) \times in (L/r)$ 

Range of hydraulic conductivity

| K = | 9.0E-05 cm/s<br>1.8E-04 feet/min        | Q =<br>h <sub>e</sub> = | 0.111<br>20.03 | ft <sup>3</sup> /min<br>feet |
|-----|-----------------------------------------|-------------------------|----------------|------------------------------|
| K = | 9.4E-05 cm/s<br>1.9E-04 feet/min        | Q =<br>h <sub>e</sub> = |                | ft <sup>3</sup> /min<br>feet |
| K = | <b>9.7E-05 cm/s</b><br>1.9E-04 feet/min | Trendline Slope         | 166.44         |                              |




| 01116LE116                                       |                                                                        |                                                                                                                                                                                                       | ň                                                   | Average Q<br>(gal/min)                   |                 | 00.0              | 0.00              | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.0<br>68.0  | 0:00                 | 00.0           | 00.0                 | 0.00           | 0000     | 00'0       | 0000           | 0010              | 95 9         | 0 00           | 00.1     | 0.0    | 000      | 00 0<br>00 0 |
|--------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------|----------------------|----------------|----------|------------|----------------|-------------------|--------------|----------------|----------|--------|----------|--------------|
| ( )<br>N <sub>and</sub>                          |                                                                        |                                                                                                                                                                                                       | 5 Point Moving Averages                             | Δ time<br>(minutes)                      |                 | 00 0<br>00 0      | 883               | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00.00<br>0000 | 00.00                | 00.00          | 0.00                 | 0.00           | 10.0-    | 0.00       | 99 0           | 00 00<br>00 00    | 90.0         | 00:0           | 8        | 10.0   | 100      | 70'0         |
|                                                  |                                                                        | Depth (f)<br>139.98<br>163.98                                                                                                                                                                         | 5 Point M                                           | Applied Head<br>(feet of water)          |                 | 89.05<br>19.05    | 19.05<br>19.05    | 50.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.05         | 19.05                | 19.05          | 50.61                | 20.91<br>20.01 | 20.61    | 19.04      | 19.01          | 40.61<br>40.61    | 10.41        | 19.04          | H0.61    | 19.04  | 20.71    | 50'61        |
|                                                  |                                                                        | of laterval<br>Vertical<br>Above<br>Below<br>rval (ft)                                                                                                                                                | 3                                                   | Average Q<br>(gal/min)                   | 0.0             | 00.0<br>00.0      | 8 8 8             | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.0<br>00.0  | 0.00                 | 00.0           | 0.00                 | 0.0            | 0.00     | 00.0       | 8.0            | 0.0               | 0.00         | 0.00           | 800      | 00.0   | 8.0      | 0.0          |
|                                                  |                                                                        | True vertical depth calculation:<br>Bottom ·<br>Hobero depth (h) 180.00<br>Abore 170.00<br>Botow 170.00<br>Vertical depth of bottom of inte                                                           | 3 Point Moving Averages                             | Δ time<br>(mins)                         | 0.0             | 9<br>9<br>9<br>9  | 8 8 8             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 8           | 0.0                  | 8 8            | 0.0                  | 8.0            | 0.0      | 0.0        | 8 8            | 8.0               | 00.0         | 0.0            | 8.8      |        |          | 0.0          |
|                                                  |                                                                        |                                                                                                                                                                                                       | 3 Point                                             | Applied Head<br>(feet of water)          | 19.05           | 19.05<br>19.05    | 50.61<br>50.61    | 20.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.05         | 50.61                | 20.41<br>20.61 | 19.05                | 20.61<br>19.05 | 19.61    | 19.04      | 10.01          | 10.61             | 19.04        | 19.61          | 90'61    | 50 E I | 19.05    | 50.61        |
| Maran .                                          | addle packer<br>ahole                                                  | True vertical depth calculation:<br>Top of laterval<br>Hole depth (ft) Vertical Depth (ft)<br>Above 130.00 Above 139.98<br>Below 140.00 Below 139.98<br>Vertical depth of top of laterval (ft) 133.56 |                                                     |                                          |                 |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                      |                | . '                  |                | · · .    | ~ 1        |                |                   | -            |                |          | •      |          |              |
|                                                  | Test Type:<br>Coustaat kead, Straddle packer<br>Gauge located downhole | True vertical depth calculation:<br>Top at laterv<br>Hole depth (ft) 19,00 At<br>Above 130,00 Bt<br>Bdow 140,00 Bt<br>Vertical depth af top of laterval                                               |                                                     | Q<br>(gal/min)                           |                 |                   |                   | and the second se |               |                      |                |                      |                |          |            |                |                   |              |                |          |        |          |              |
|                                                  | ĔŬŬ                                                                    | . π 4 4 ×                                                                                                                                                                                             |                                                     | Applied Head<br>(feet of water)<br>1905  | 19.05<br>19.05  | 20,41<br>20,61    | 20.61<br>20,05    | 19.05<br>19.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.05         | 19.05<br>10.05       | 10.61          |                      | 50.41<br>50.41 |          |            | 40.61          |                   | 19,04        | 19.04          |          | 10.61  | 19.05    | 19.05        |
|                                                  |                                                                        | inches<br>feat<br>feat below top of casing<br>feat below top of casing<br>feat below top of casing<br>feat below top of casing                                                                        | -                                                   | Measured Head<br>(feet of water)<br>-001 | 10.0            | 5 5 5             | 10 0              | 10.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0          | 10.0                 | 0.07           | 10:0                 | 10.0           | -0.02    | 0.02       | 70-0-<br>10-0- | 10.0 <del>-</del> | 10.0-        | -0.07<br>-0.61 | 10.07    | 10.0   | 10.0-    | 10:0-        |
| JCSSA                                            |                                                                        | 3.78<br>0.16<br>138.58<br>163.94<br>163.94<br>25.36<br>132.20<br>150.70                                                                                                                               |                                                     | Elapsed time<br>(minutes)<br>o           | 0.06<br>0.12    | <b>C</b> 3        | 0.42              | 0.6<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.78          | 980<br>980           | 1.02           | 11                   | 1 26           | 86.1     | 141<br>144 | 8 I I          | 1 64              | = }          | 9              | 3        | 1.1    | 11       | 82.2         |
| Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 254<br>7 (r)<br>28-Oct-95                                              | Tap                                                                                                                                                                                                   | 13:21:27                                            | Elapsed time<br>(hours)<br>0.00          | 00.0<br>100.0   | 10 0              | 10:0              | 10:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0          | 0.01<br>0.02         | 0.02           | 0.02                 | 20.0           | 0.02     | 0.02       | 0.03           | 6.03              | (0.0<br>(0.0 | (0)0           | 10.0     | 0.04   | 0.04     | 10 0         |
| 700% Client<br>Client<br>Site<br>Praject No.     | Borehole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius<br>Test section location<br>Length of test interval<br>Gauge Depth<br>Static Water Level                                                                         | <b>General Litbology</b><br>Sandstone<br>Start Time | Clock<br>Time<br>D.21:27                 | 101001<br>10101 | 0.1145<br>0.12149 | 131.52<br>1321.59 | 13:22:03<br>13:22:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13:22:14      | 13.22.17<br>13.22.25 | 13:22:24       | 20:22:41<br>91:52:41 | 11:22:43       | 13.22.50 | 10.12.11   | H0.02.01       | 10.12.11          | 0.0.0        | 0.014          | 92-02-01 | 10,033 | 13:23:40 | 19:00 C      |

Gulder Associator

254072A ('IIA, Input Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) |                  |
| 39.86           | 3.000            |

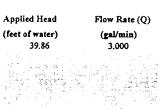


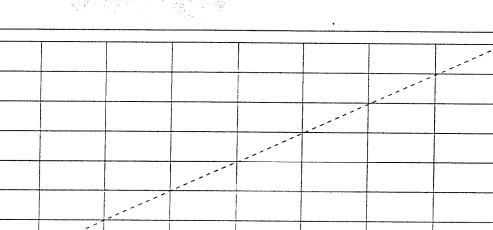
| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole254Interval Number7 (r)

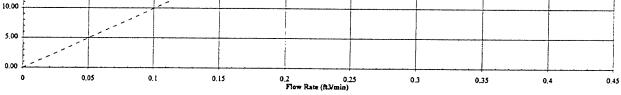
40,00

35.00


30.00

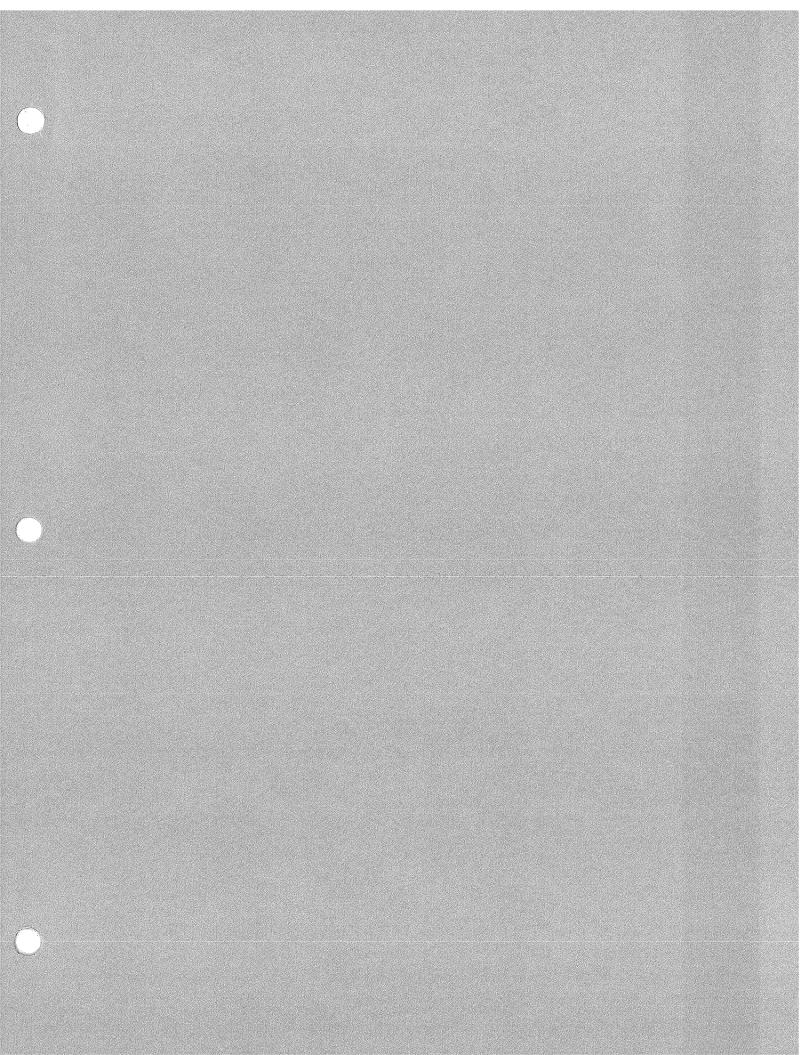

\_25.00

320.00


15.00

### Plot data

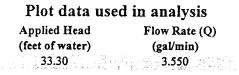




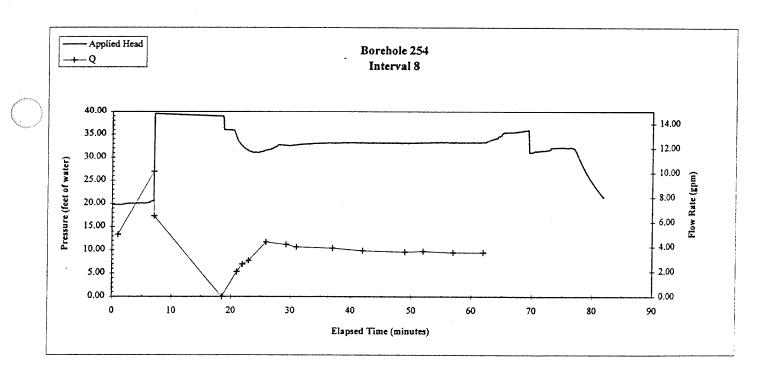

Flow Rate (Q) (ft<sup>3</sup>/min) 0.4011



| K = 1/(    | $2\pi L$ ) x (Q/h <sub>e</sub> ) x ln (L/r) | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Range of l | ydraulic conductivity                       |                                                                                                                          |                                                                    |
| K =        | 1.6E-04 cm/s                                | $Q = 0.401 \text{ ft}^3/\text{min}$                                                                                      |                                                                    |


| ζ= | 1.6E-04 cm/s     | Q =              | 0.401 | ft <sup>3</sup> /m |
|----|------------------|------------------|-------|--------------------|
|    | 3.2E-04 feet/min | h <sub>e</sub> = | 39.86 | feet               |



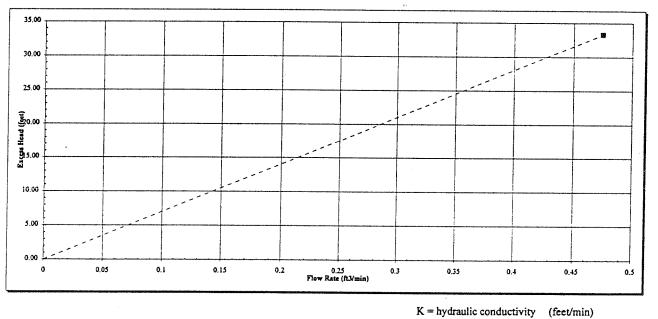

| 00111642-686  |                                                                               |                                                                                                                                                  | 22<br>5 Point Moving Averages                | Δ time Average Q<br>(minutes) (ral/min) |                                       | 000<br>000<br>000<br>000                                                   |                               |                             | 0.02 1.00<br>0.00 1.00<br>0.00 1.00<br>0.00 0.00 |                                                | 0.07 0.00<br>0.07 0.00<br>0.08 0.00<br>0.04 0.00<br>0.01 0.00<br>0.01 0.00<br>0.01 0.00<br>0.07 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------|-------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                               | epdk (ft)<br>129.96<br>139.96                                                                                                                    | 131.92<br>5 Point Mov                        | Applied Head<br>(feet of water)         |                                       | 19.74<br>19.74<br>19.74                                                    | 19.74<br>19.74<br>19.74       | 19.75<br>19.75<br>19.75     | 19.75<br>19.76<br>19.76<br>19.76                 | 19.76<br>19.76<br>19.77<br>19.78               | ar (1<br>14 (1<br>14 (1<br>16 (16 |
|               |                                                                               | True vertical depth calculation:<br>Bottom of laterval<br>Hole depth (ft) Vertical Depth (ft)<br>Above 130.00 Above 12<br>Bedow 140.00 Bedow 1   | (1) The party is <b>1</b>                    | Average Q<br>(gal/min)                  | 8                                     | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 0.00<br>0.00<br>00.00         | 0.00<br>0.00<br>1.67        | 1.67<br>1.67<br>0.00<br>0.00                     | 8 8 8 8 8<br>8 8 8 8 8<br>8 8 8 8              | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                               | True vertical depth calculation:<br>Bottom (<br>Above 120.00<br>Babov 140.00<br>Vortical doorb of horono of 1                                    | 3 Point Moving Averages                      | Δ time<br>(mina)                        | 8.0                                   | 10 00 00<br>00 00 00<br>00 00                                              | 8 8 8<br>8 8 8                |                             | 100<br>200<br>200<br>200                         | 10.0<br>20.0<br>10.0<br>20.0                   | 0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                               |                                                                                                                                                  | Poù                                          | Applied Head<br>(feet of water)         | 47.91                                 | 19.74<br>19.74<br>19.74                                                    | 47.81<br>47.81<br>47.81       | 19.73<br>19.73<br>19.75     | 87.81<br>87.81<br>87.81                          | 19.75<br>19.77<br>19.71<br>19.80               | 51,61<br>51,61<br>51,61<br>51,61<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,93<br>51,935 |
|               | ŝtraddle packer<br>Pwabole                                                    | True vertical depth calculation:<br>Top of laternal<br>Hole depth (ft) Vertical<br>Above 110.00 Above<br>Báow 1130.00 Báow                       |                                              | ¥ ¥                                     |                                       |                                                                            |                               |                             |                                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Tei Type:<br>Conian bead, Siradde packer<br>Gauge located downbale            | True vertical depth calculations:<br>Top of interv<br>Ve<br>Move (10, 10,00 Above<br>Blow (10,00 Blow Above<br>Vertical depth of top of interval |                                              | Q<br>(gal/min)                          |                                       |                                                                            |                               | 8                           |                                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                                                                               |                                                                                                                                                  |                                              | Applied Head<br>(feet of water)         | 19.75<br>19.75<br>19.74               | 16.14<br>17.4                                                              | 47.61<br>47.91<br>27.91       | 27.91<br>27.91<br>27.91     | 19.76<br>77.91<br>19.75                          | •                                              | 19 81<br>19 84<br>19 86<br>19 90<br>19 90<br>19 99<br>19 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                               | inchea<br>feet<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing<br>feet below top of casing                   |                                              | Measured Head<br>(feet of water)        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                                            |                               | 10 0-<br>10 0-              | 100-<br>101-<br>0010                             | 8 7 7 8 8<br>8 8 9 9 9                         | 0.03<br>0.09<br>0.12<br>0.14<br>0.14<br>0.15<br>0.19<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | ILCSSA                                                                        | 87, E<br>0.10<br>82, E11<br>94, 861<br>25, 30<br>02, 301                                                                                         |                                              | Elapsed time<br>(minutes)               | 0<br>0.06<br>0.12<br>0.12             | 0.24<br>0.36<br>0.42                                                       | 0.54<br>0.6<br>0.72           | 0.78<br>0.84<br>0.96        | 1.02<br>1.14<br>1.26                             | 11 1 2 3 1<br>17 1 3 3 1<br>17 1 3 1 3 1       | 11<br>14<br>136<br>138<br>138<br>138<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691<br>254<br>8 (r)<br>20-Nov-95 | Top                                                                                                                                              | 7:53.06                                      | Elapsed time<br>(hours)                 | 00 0<br>00 0<br>00 0<br>00 0          | 10'0<br>10'0                                                               | 10 0<br>10 0                  | 0.0<br>10,0<br>20.0         | 0.02<br>0.02<br>0.02                             | 0.02<br>0.03<br>0.03<br>0.03                   | 000<br>000<br>000<br>900<br>900<br>900<br>900<br>900<br>900<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Support State | Client<br>Site<br>Project No.<br>Borchole<br>Test Nomber<br>Test Date         | Borehole diameter<br>Borehole radius<br>Test acction location<br>Leagth of test interval<br>Gauge Depth<br>Static Water Level                    | General Lithology<br>Sandstone<br>Start Time | Clock                                   | 80167<br>01 187<br>01.187<br>02.187   | 05/25/<br>15/25/<br>16/257                                                 | 7.53.34<br>7.53.42<br>7.53.49 | 65.657<br>36.667<br>94.9657 | 754.07<br>754.14<br>754.18<br>754.22             | 90,807<br>20,807<br>20,807<br>20,807<br>20,807 | 2,54,54<br>2,52,52<br>2,52,52<br>1,52,51<br>1,52,51<br>1,52,51<br>1,52,51<br>2,52,51<br>2,52,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Golder Associates

254082A.CHA, Input Data



i




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 254                   |

Interval Number 8 (r)

### Plot data

| aia |                 |               |                        |
|-----|-----------------|---------------|------------------------|
|     | Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|     | (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
|     | 33.30           | 3.550         | 0.4746                 |
|     |                 |               |                        |



| $K = 1/(2\pi)$ | .) x (Q/h <sub>e</sub> | ) x ln | (L/r) |
|----------------|------------------------|--------|-------|
|----------------|------------------------|--------|-------|

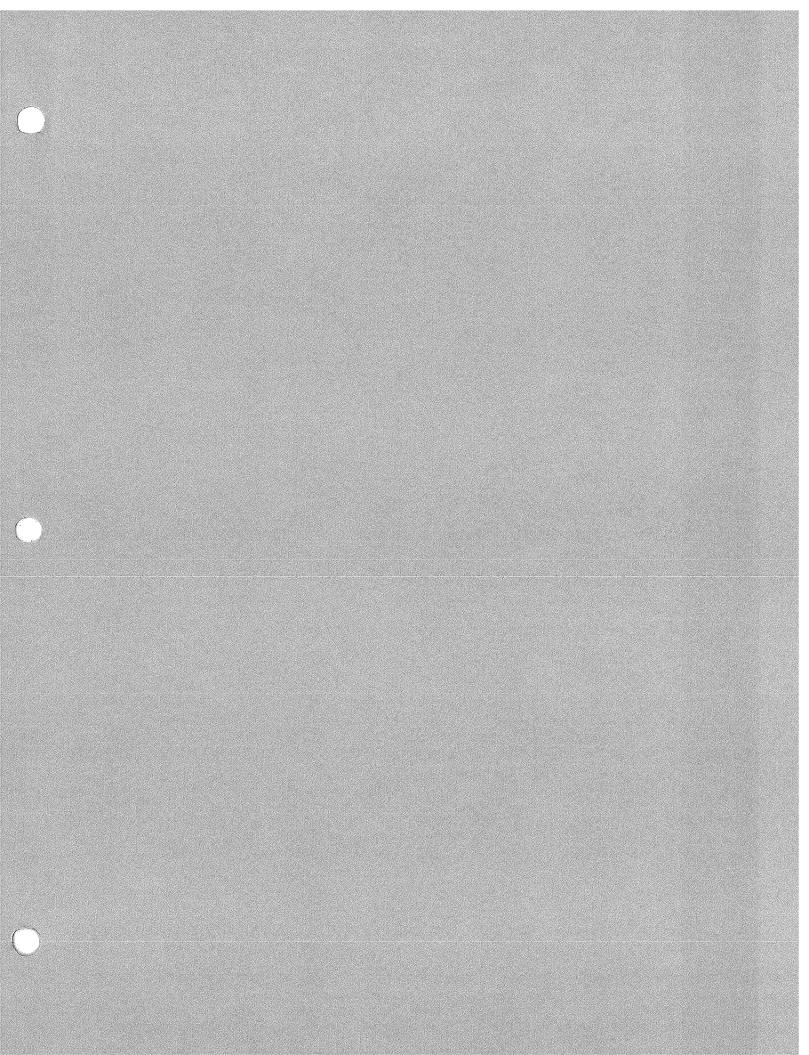
### Range of hydraulic conductivity

| K = | 2.3E-04 cm/s     | Q =              | 0.475 | ft <sup>3</sup> /min |
|-----|------------------|------------------|-------|----------------------|
|     | 4.5E-04 feet/min | h <sub>e</sub> = | 33.30 | feet                 |

Q = Flow rate

he = Applied head

r = borehole radius


L = length of interval tested (feet)

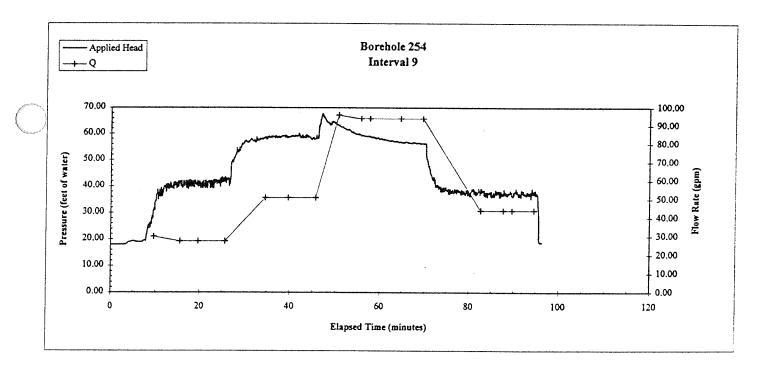
(ft<sup>3</sup>/min)

(feet)

(feet)

254082A.CHA, K calculation

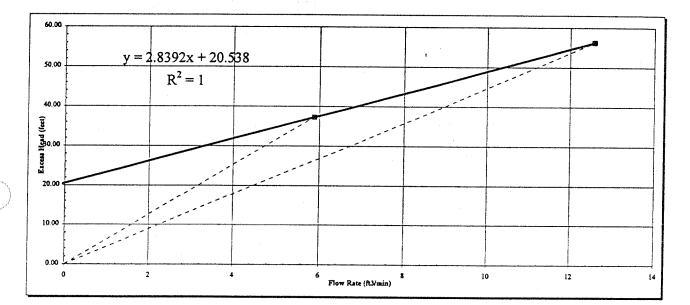



| 0[1]16[]-[16 |                                                  |                                                                        |                                                                                                         |                                                                      | agus<br>Average (<br>) (gal/min) |                     |        | 00.0           | 000                | 00.0           | 00'0               | 0.00           | 0.00               | 0.00              | 8 8          | 0:00           | 0.0          | 0.0          | 0.00           | <b>0</b> .0 | 00.0        | 00.00       | 00.00       | 0000           | 00.0<br>100.0 | 8 8 8              | 0.00                                   |
|--------------|--------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|---------------------|--------|----------------|--------------------|----------------|--------------------|----------------|--------------------|-------------------|--------------|----------------|--------------|--------------|----------------|-------------|-------------|-------------|-------------|----------------|---------------|--------------------|----------------------------------------|
|              |                                                  |                                                                        |                                                                                                         | 0<br>A Point Muvine A versee                                         | ∆ time<br>∆ time<br>(minutes)    |                     |        | 000            | 0.0                | 88             | 8.0                | 0.0            | 0.0                | 00.0              | 000<br>0     | 90:02          | 10.0<br>0.00 | 10.0         | 10:0           | 0.00        | 50.0        | 10.0-       | 0.02        | () ()<br>() () | 70:0-         | 10.0               | (U,U                                   |
|              |                                                  |                                                                        | epth (ft)<br>109.99<br>119.99                                                                           | 11501<br>A Point M                                                   | Applied Head<br>(feet of water)  |                     |        | 17.97<br>17.07 | 12.11              | 17.97<br>17.67 | 16.11              | 19,11          | 86711<br>17.99     | <del>6</del> 6721 | 17.99        | 17.99          | 17.99        | 17.99        | 17.98          | 17.99       | 18.00       | 18.00       | 16.01       | 10.81          | 18.01         | 1011               | -a.e.                                  |
|              |                                                  |                                                                        | t calculation:<br>Bottom of interval<br>Vertical Depth (1)<br>110.00 Above 1<br>120.00 Balow 1          | Vertical depth of bottom of laterval (ft)<br>it Movine Averages      | Average Q<br>(gal/min)           |                     | 0.00   | 00.0           | 0.0                | 0.00           | 0.0                | 8.0            | 0.00               | 0.00              | 0.0          | 0.00           | 8<br>8<br>8  | 0.00         | 0.00           | 800         | 00.0        | 00.0        | 0.0         | 8              | 000           | 000                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|              |                                                  |                                                                        | True vertical depth calculation:<br>Bottom<br>Hole depth (1)<br>Above 110.00<br>Below 120.00            | Vertical depth of botto<br>3 Point Movine Averaces                   | Δ time<br>(mins)                 |                     | 0.0    | 0.0<br>0.0     | 80                 | 00.0<br>00.0   | 8,9                | 8.0<br>8       | 100                | 0.03<br>10 c      | 0.06         | 0.0            | 8 8          | 0.0          | <b>1</b> 0.07  | 10.0        | 0,03        | 0.02        | <b>5</b> .9 |                | 0.02          | 0.03<br>0.02       |                                        |
|              |                                                  | • • • • • • • • • • • • • • • • • • •                                  | a: T.<br>rval<br>Vertical Depth (ft) H.<br>Above 79.99<br>Balow 89.99                                   | . 19.98<br>V<br>3 Point                                              | Applied Head<br>(feet of water)  |                     | 16.11  | 16:11<br>16:11 | 17.51              | 18.11<br>18.11 | 19.71              | 19.11<br>19.11 | 17,94              | 11.00<br>11.00    | 66.11        | 17.99          | 11.00        | 17.99        | 17.99          | 17.99       | 18.00       | 18.02       | 18.01       | 14.01          | 18.01         | 18.01<br>18.01     |                                        |
|              |                                                  | Tesi Type:<br>Constant bead, Straddle packer<br>Gauge located dewrhole | vertical depth calculation<br>Top of inte<br>depth (ft) 20.00.<br>20.00.                                | Vertical depth of top of interval (fi)                               | Q<br>(gal/min)                   |                     |        |                |                    |                |                    |                |                    |                   |              |                |              |              |                |             |             |             |             |                |               |                    |                                        |
|              |                                                  | <u>5</u> 5 4                                                           | True<br>Hale c<br>Above<br>Bsiow                                                                        | Ve                                                                   | Applied Head<br>(feet of water)  |                     |        | 79.71<br>79.71 |                    | 79.71<br>79.71 |                    | 79.71<br>79.71 |                    | 66.71<br>[8.03    |              | 17.97<br>18.01 |              |              | 17.97          |             |             | 11.01       |             |                |               | 18.01<br>18.02     |                                        |
|              |                                                  |                                                                        | inchea<br>feet<br>feet below top of <b>caaing</b><br>feet below top of caaing                           | feet below tup of casing<br>feet below tup of casing                 | Measured Head<br>(feet of water) | <b>80</b> .97<br>97 | 80.0-  | <b>10</b> .0   | <b>B</b> 0.0       | 80.9<br>90.9   | <b>10</b> .0       | <b>10</b> .0   | <b>1</b> 0.0       | 0.07              | <b>1</b> 0.0 | 3 3            | <b>1</b> 0.0 | <b>10</b> .0 | -0.01<br>-0.07 | 90.04       | 10.0-       | <b>1</b> .0 | 0.07        | - 0.02         | -0.0¢         | 10'0-<br>10'0-     |                                        |
|              | le/CSSA                                          |                                                                        |                                                                                                         | 155.28                                                               | Elapsed time<br>(minutes)        | 0                   | 8 El 1 | . <b>.</b>     | 9C.0               | 0.54           | 0.6<br>2.4         | 0.78           | <b>1</b> 10        | 201               | N :          | 77             | 26.1         | a i          | 1.62           | 1.68        | -           | 98 1        | 2.04        | 2.1            | 111           | 22<br>23           |                                        |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 254<br>9 (r)<br>13-Dec-95                                              | Top                                                                                                     | 8:50:24                                                              | Elapsed time<br>(hours)          | 00.0                | 8 8 8  | 10.0           | 100                | 10.0           | 10:0               | 10.0           | 10.0               | 0.02              | 10.0         | 0.02           | 0.02         | 0.02         | E0.0           | 0.03        | 0.03        | 0 0<br>10 0 | 6.03        | P0:0           | 0.04          | 10.0<br>10.0       |                                        |
| which        | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                   | Borcholc diameter<br>Borcholc radius<br>Test section location<br>Leugth of test interval<br>Concerbruch | Gange septu<br>Static Water Level<br>General Litbology<br>Start Time | Clock<br>Time                    | 8:30:24<br>8:50:28  | 1606.4 | E:50:42        | E:50.46<br>E:50.49 | B.50.56        | B:51:00<br>B:51:04 | 11151          | 8:51:14<br>8:51:22 | 131:25            | B.51:32      | B.51:40        | E5143        | 8:51:50      | 1:52.01        | 8:52.05     | 1.52.12<br> | 5,32,33     | 1:32.26     | 8:32:30        | 1.52:37       | E.52.41<br>E.52.44 |                                        |

**Gulder Associates** 

254092A CHA, Bigur Daia

Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)37.2444.00056.2294.000


.



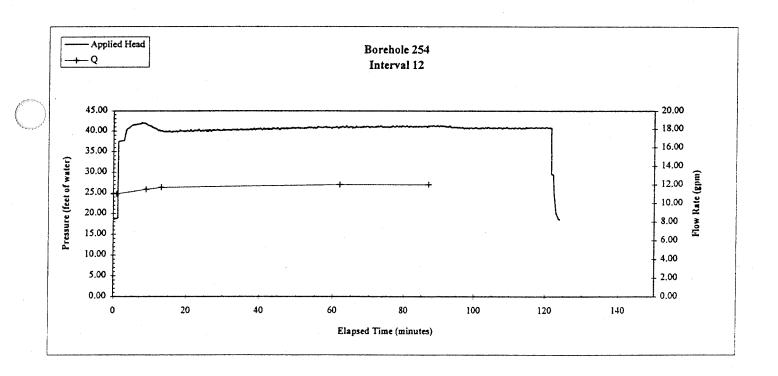

| Ì | Client          | Morrison-Maierle/CSSA |
|---|-----------------|-----------------------|
|   | Site            | Miner Flat            |
|   | Project No.     | 943-27691             |
|   | Borehole        | 254                   |
|   | Interval Number | 9 (r)                 |

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 37.24           | 44.000        | 5.8828                 |
| 56.22           | 94.000        | 12.5678                |
|                 |               |                        |



| K = 1/(2)  | 2πL) x (Q/h <sub>e</sub> ) x in (L/r)   | Q = Flow<br>he = App    | lied head<br>h of inter | val tested                   | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|------------|-----------------------------------------|-------------------------|-------------------------|------------------------------|--------------------------------------------------------------------|
| Range of h | ydraulic conductivity                   |                         |                         |                              |                                                                    |
| K =        | 2.6E-03 cm/s<br>5.1E-03 feet/min        | Q =<br>h <sub>e</sub> = | 5.883<br>37.24          | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | <b>3.6E-03 cm/s</b><br>7.2E-03 feet/min | Q =<br>h <sub>e</sub> = | 12.568<br>56.22         | ft <sup>3</sup> /min<br>feet |                                                                    |
| K =        | 5.7E-03 cm/s<br>1.1E-02 feet/min        | Trendline Slope         | 2.84                    |                              |                                                                    |



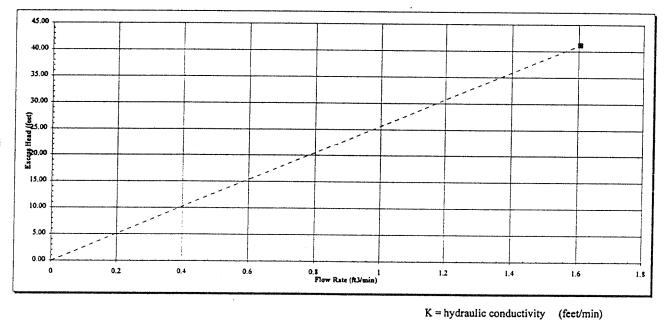

| 061.1912-649 |                                                  |                                                                         |                                                                      |                                                        |                                  |                                           |                              |                         |               | Average Q                       | (gaumu) |              |          |         | 000                                                                             | 000     | 0.00    | 000     | 0.0     | 2.20    | 2.20    | 2.20  | 2.20        | 1.20    | 00.0    | 00.0         | 0.00          |
|--------------|--------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|-------------------------------------------|------------------------------|-------------------------|---------------|---------------------------------|---------|--------------|----------|---------|---------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|-------|-------------|---------|---------|--------------|---------------|
| $\bigcirc$   |                                                  |                                                                         |                                                                      |                                                        |                                  |                                           |                              | 5 Point Moving Averages | •             | A time .                        |         |              |          |         | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 0.07    | 0.02    | 10.0    | -0.02   | 0.05    | 0.21    | 0.14  | 0.15        | 61.0    | 18.54   | 18 89        | 19.46         |
|              |                                                  |                                                                         |                                                                      | ottom of interval<br>Vertical Depth (f)<br>Above 50    | 3                                | 59.90                                     |                              | 5 Point Mo              |               | Applied Head<br>(feet of water) |         |              |          | 11 73   | 11.72                                                                           | 18.71   | 18.70   | 18.70   | 18.71   | 18.71   | 18.76   | 18.78 | 18.82       | 18.65   | 22.59   | 26.36        | 20.25         |
|              |                                                  |                                                                         | th calculation:                                                      | Bottom of interval<br>Vertical Depth (f<br>50,00 Above |                                  | Vertical depth of bottom of interval (ft) |                              | -                       |               | Average Q<br>(gal/min)          |         |              |          | 8.8     | 0.00                                                                            | 00.00   | 00.00   | 0.00    | 0.00    | 0.00    | 1.67    | 3.67  | 3.67        | 0.00    | 0,00    | 0.00         | 80.0          |
|              |                                                  |                                                                         | True vertical depth calculation:                                     | Hole depth (ft)<br>Above                               | Below                            | 'ertical depth of                         |                              | 3 Point Moving Averages | A 41          | (mine)                          |         |              | wø       | 4.0     | 90.0                                                                            | 0.02    | 10.0    | 0.00    | 0.03    | -0.02   | 0.03    |       | <b>6</b> 11 | -0.07   | 0.02    | 67.91        | <b>1</b> 0'01 |
|              |                                                  |                                                                         | F                                                                    | Vertical Depth (ft) H                                  | 2<br>2<br>2                      | 35.40 V                                   |                              | 3 Point M               | Applied Head  | (feet of water)                 |         |              | 12 74    | 14.73   | 18.71                                                                           | 18.69   | 18.69   | 18.71   | 11.71   | 11.71   | 18.72   | 12./2 |             |         | 91.85   | 10.CT        | A-10          |
| $\bigcirc$   |                                                  | Test Type:<br>Constant head, Straddle packer<br>Gauge located downhole. | True vertical depth calculation:<br>True vertical dente calculation: | Hole depth (ft) Vertical<br>Above 30.00 Above          | ow 40.00 Below                   | Vertical depth of top of interval (ft)    |                              |                         | 0             | (ui                             |         |              |          |         |                                                                                 |         |         |         |         |         |         |       |             |         |         | - 440<br>249 |               |
|              |                                                  | 4 ° 5                                                                   | ц ц                                                                  | ho<br>Ab                                               | Bclow                            | Ve                                        |                              |                         | Applied Head  | (feet of water)                 | 14.90   | 18.73        | EC.21    | 18 76   | 18.69                                                                           |         | 17 TE   | 12.71   | 11.72   | 14.69   | 13.74   | 18.92 | 3           | 18.87   | 18.87   | 37.46        |               |
|              |                                                  |                                                                         | inch <b>ei</b><br>feet                                               | feet below top of casing<br>feet below top of casing   | feet below top of casing         | fect below top of caring                  |                              |                         | Measured Head | (feet of water)                 | 0.25    | <b>9</b> 0.0 | 0.08     | 0.1     | 10 S                                                                            |         | 100     | 90.0    | 0.07    | 0.04    | 0.09    | 0.27  | 0.20        | 0.22    | 0.22    | 18.81        |               |
|              | Ie/CSSA                                          |                                                                         | 3.78<br>0.16                                                         | 35.40<br>59.90<br>24.50                                | 29.00                            | 154.30                                    |                              |                         | Elapsed time  | (minutes)                       | ¢       | 0.06         | 0.12     | 10      | 0.36                                                                            | 0.42    | 0.54    | 9.0     | 0.66    | 0.78    | 0.84    | 1.05  | 1.05        | 1.14    | 13      | 1.26         |               |
|              | Morrison-Malerle/CSSA<br>Miner Flat<br>943-27691 | 254<br>12<br>29-Oct-95                                                  |                                                                      | Top<br>Boitem                                          |                                  |                                           |                              | 9:50:10                 | Elapsed time  | (Fours)                         | 0:00    | 0.00         | 900      | 10:0    | 10.0                                                                            | 10.0    | 10.0    | 10.0    | 0.01    | 10.0    | 10:0    | 0.02  | 0.02        | 0.02    | 0.02    | 0.02         |               |
| hiouxe       | Client<br>Site<br>Project No.                    | Borchole<br>Test Number<br>Test Date                                    | Borchole diameter<br>Borchole radius                                 | I cat accison location<br>Length of test interval      | Gauge Depth<br>Static Water Load |                                           | UCERCIAL LAINOLOGY<br>Banalt | Start Time              | Clock         | linc                            | 9:30:10 | 9-2014       | 11:00:14 | 12,02.6 | 26.02.4                                                                         | 9.50.35 | 9.50.42 | 9,50:46 | 9,50,50 | 9.30.57 | 9.51.00 | 9.113 | 9.115       | 9:51:18 | 9.51:22 | 9.31.26      |               |

**Golder Associates** 

254012A CHA, Input Data

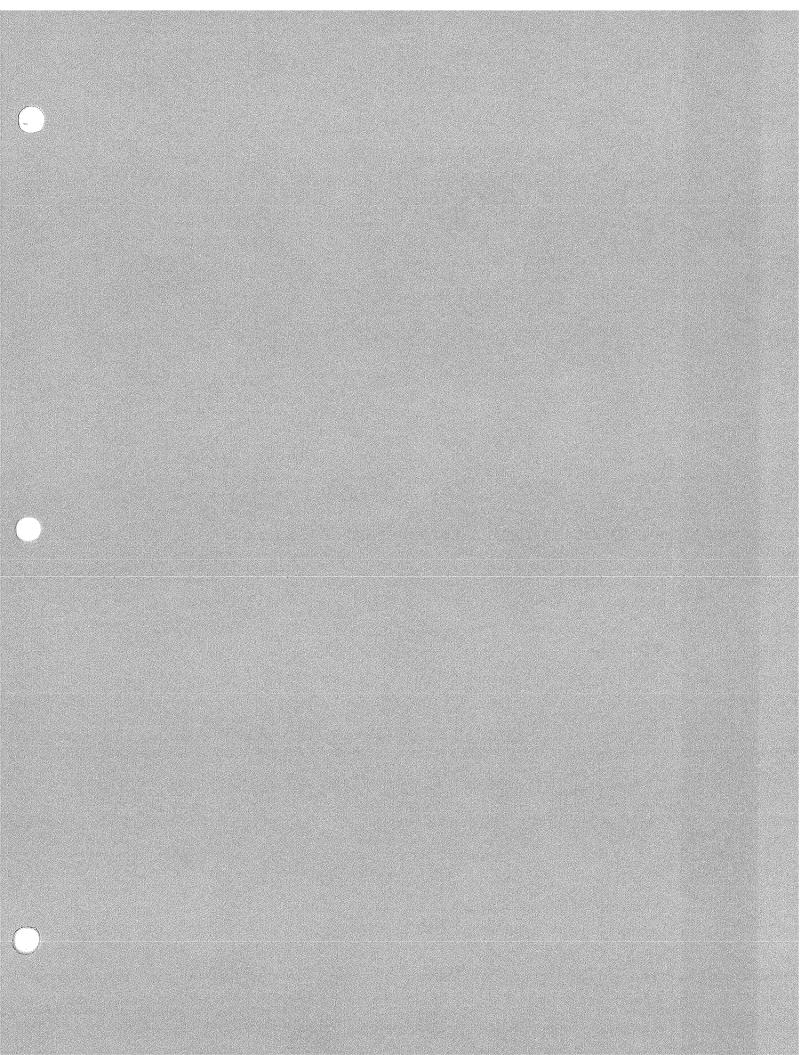
# Plot data used in analysisApplied HeadFlow Rate (Q)(feet of water)(gal/min)41.1512.000




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
|             |                       |

Borehole 254 Interval Number

#### Plot data


12

| 44.44 |                 |                |                        |
|-------|-----------------|----------------|------------------------|
|       | Applied Head    | Flow Rate (Q)  | Flow Rate (Q)          |
|       | (feet of water) | (gal/min)      | (ft <sup>3</sup> /min) |
|       | 41.15           | 12.000         | 1.6044                 |
|       |                 | and the second |                        |
|       |                 |                |                        |



| $K = 1/(2\pi L) x (Q/h_e) x \ln (L/r)$ | Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|
| Range of hydraulic conductivity        |                                                                                            |                                                      |

| K = | 6.5E-04 cm/s     | Q =              | 1.604 | ft <sup>3</sup> /min |
|-----|------------------|------------------|-------|----------------------|
|     | 1.3E-03 feet/min | h <sub>e</sub> = | 41.15 | feet                 |



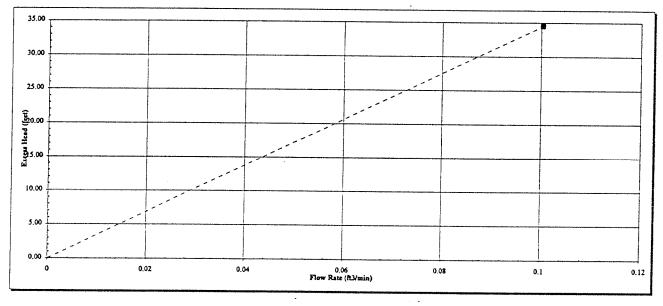
| 0111825198        |                                                   |                                                                                                                                                                                                                                       | 1614                    | Average Q                        |                                                                                                            | 0.00                | 00 00<br>00 00 | 0.00                | 0000           | 0.00         | 00.0       | 0.0      | 00.00                | 0000           | 0000          | 0.0      | 0.00            | 0.00              | 0.00                 | 0.00     | 00.0           |
|-------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|----------------|---------------------|----------------|--------------|------------|----------|----------------------|----------------|---------------|----------|-----------------|-------------------|----------------------|----------|----------------|
|                   |                                                   |                                                                                                                                                                                                                                       | 5 Point Moving Averages | ∆ time<br>(minutes)              |                                                                                                            | 0.03                | 6 6            | 01.0                | 9 9            | 01.0-        | 8 3<br>7 7 | 10.0-    | -0.05                | (0-0-          | 100           | 0.02     | CO:O            | 0.05              | 0.04                 | 9.04     | 0.04           |
|                   |                                                   | laterval<br>Vertical Depth (ft)<br>Above 20<br>Below 20<br>15,40                                                                                                                                                                      | 5 Point M               | Applied Head<br>(feet of water)  |                                                                                                            | 28.19               | 28.17          | 28.15               | 28.10          | 28.04        | 20.02      | 28.01    | 28.00                | 27.99<br>29.72 | <b>1</b> 6,75 | 27.98    | 66'LZ           | 28.00             | 28.01                | 28.02    | 28.03<br>28.04 |
|                   |                                                   | 7 6                                                                                                                                                                                                                                   | D                       | Average Q<br>(gal/min)           | 8.0                                                                                                        | 0.00                | 00.00          | 00.0                | 0.00           | 000          | 00.0       | 0.00     | 000                  | 0.00           | 0,00          | 0.00     | 0.0             | 0.00              | 0.0                  | 0.0      | 0000           |
|                   |                                                   | True vertical depth calculation:<br>Bottom o<br>Hole depth (ft)<br>Above 20.00<br>Bolow [2] 20.00<br>Vertical depth of bottom of late                                                                                                 | 3 Point Moving Averages | Δ time<br>(mins)                 | 10.0                                                                                                       | 8 8                 | -0.05          | 3 3                 | <b>3</b> 8.0   | 20 Q<br>20 Q | 10:07      | 0.0      | 8                    | 8.0            | 0.00          | 10.0     |                 | 20.0              |                      |          | 0.02           |
|                   |                                                   | ter<br>Mi Tr<br>Prval<br>Vertical Depth (ft) Ha<br>Abova 20,000 Ha<br>Babov 30,000 Ve                                                                                                                                                 | 3 Point 1               | Applied Head<br>(feet of water)  | 28,20                                                                                                      | 28.19<br>28.19      | 20.17          | 24.13               | 28.10          | 28.05        | 26.03      | 24.01    | 27.95                | 27.94          | 27.96         | 27.98    | 64.11<br>100 BC | 8 F F             | 24.02                | 28.01    | 21.04          |
| $\langle \rangle$ |                                                   | Test Type:<br>Constant head, Straddle packer<br>Gauge lecated downhole<br>True vertical depth calculation:<br>True vertical depth (1) Vertica<br>Hole depth (1) Vertica<br>Bulow 20.00 Bulow<br>Vertical depth of top of laterval (1) |                         | Q<br>(gal/min)                   |                                                                                                            |                     |                |                     |                |              |            |          |                      |                |               |          |                 |                   |                      |          |                |
|                   |                                                   | 500 F # 4 # >                                                                                                                                                                                                                         |                         | Applied Head<br>(feet of water)  | 28.20<br>28.20<br>28.20<br>28.70                                                                           | 28.20               | 24.17<br>28.15 | 28.13               | 28.10<br>28.07 | 20.05        | 28.03      |          |                      |                | 27.94         |          |                 |                   | 28.02                | 28.03    | 28.04          |
|                   |                                                   | inches<br>feed<br>feed below top of casing<br>feed below top of casing<br>feed<br>feed below top of casing<br>feed below top of casing                                                                                                |                         | Measured Head<br>(feet of water) | 97 0<br>90 0<br>91 0<br>93 0<br>93 0                                                                       | 10'0-               | 10.0-<br>20.0- | -0.07               | 0.10<br>0.13   | 40.15        | 119        | 12.0-    | -0.22                | 6.9<br>5       | 477<br>70     | 12.0-    | 010             | -0.19             | <b>1</b> 1.0-        | -0.17    | 0.16           |
|                   | laierte/CSSA                                      | 3.78<br>0.16<br>35.00<br>35.40<br>6.40<br>6.40<br>1.4.30                                                                                                                                                                              |                         | Elapsed time<br>(minutes)        | 0<br>0.06<br>0.12<br>0.18                                                                                  | 0.3                 | 0.42           | 15.0                | 0.72           | 0.76         | 8          | 1.02     | 111                  | 1.26           | 1 3           | 1.44     | 1.36            | 1.62              | 1.68                 |          | 1.86           |
|                   | Morrison-Maierle/C\$SA<br>Miner Flat<br>943-27691 | 134<br>13-Oct-95<br>Top<br>Bottom                                                                                                                                                                                                     | 12:17:21                | Elapsed time<br>(hours)          | 00 0<br>13 0<br>13 0<br>13 0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 10.0                | 10.0           | 10.0                | 0.01           | 100          | 0.02       | 20.0     | 0.02                 | 0.02           | 0.02          | 0.02     | CO.O            | (0 <sup>.</sup> 0 | 0.01                 | (0)<br>0 | 10.0           |
| Inure             | Client<br>Site<br>Project No.                     | ber<br>iameter<br>adius<br>a location<br>ta<br>ta<br>ta<br>t Level                                                                                                                                                                    | otart time              | C.10ctk<br>Time                  | 12:17:21<br>12:17:25<br>12:17:28<br>12:17:23                                                               | 4071.01<br>13-17-01 | 12.17.46       | 1671-21<br>76.11.11 | 12.18.04       | 12.18.04     | 12:18:19   | 12:16:22 | 92.81.21<br>FF-84-C1 | 16:41:51       | 12:18.44      | 12.18.47 | 12:18:55        | BCB171            | 20.71.21<br>13.19.04 | 11-01-11 | n              |

Golder Associates

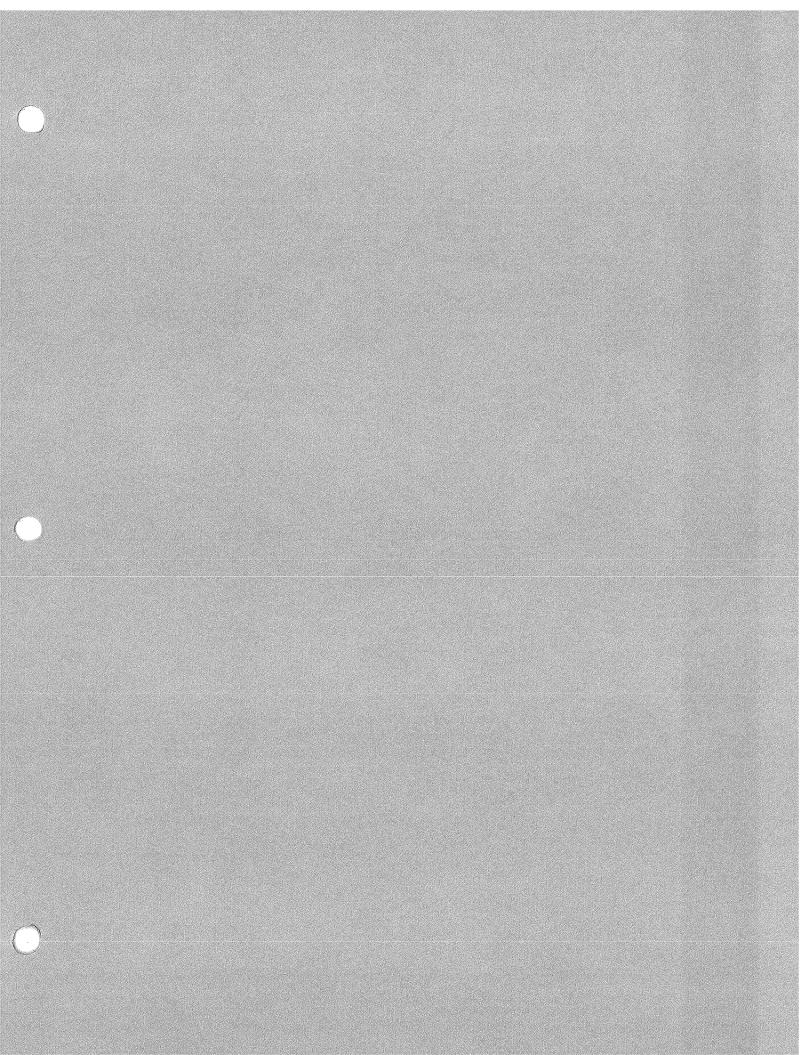
254013A.CHA, Input Data

## Plot data used in analysis Applied Head Flow Rate (Q)

| Applied Head    | Flow Rate (Q) |
|-----------------|---------------|
| (feet of water) | (gal/min)     |
| 34.50           | 0.750         |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |
| Borehole    | 254                   |

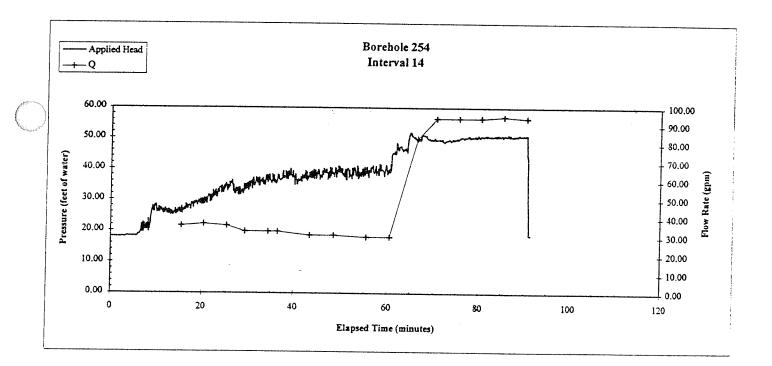

Borehole Interval Number 13

Plot data

Applied Head Flow Rate (Q) Flow Rate (Q) (feet of water) 34.50 (gal/min) 0.750 (ft<sup>3</sup>/min) 0.1003



| K = 1/(  | $(2\pi L) \ge (Q/h_e) \ge \ln (L/r)$    | K = hydraulic conductivity<br>Q = Flow rate<br>he = Applied head<br>L = length of interval tested<br>r = borehole radius | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |
|----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Range of | hydraulic conductivity                  |                                                                                                                          |                                                                    |
| K =      | <b>1.4E-04 cm/s</b><br>2.7E-04 feet/min | $Q = 0.100 \text{ ft}^3/\text{min}$<br>h <sub>e</sub> = 34.50 feet                                                       |                                                                    |

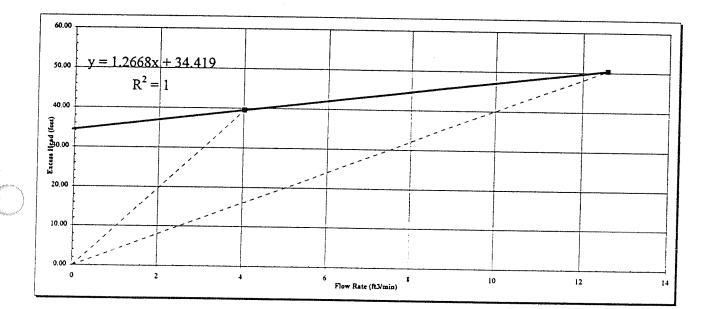



| 3.78     inches       0.16     feet       0.15     feet       0.16     feet       0.12     feet       0.12     feet       23.10     feet       135.23     feet below upp of caning       23.11     feet       23.12     feet       135.23     feet below upp of caning       23.11     feet       23.12     feet below upp of caning       23.13     feet below upp of caning       23.14     feet       23.15     feet below upp of caning       23.14     feet       23.23     feet below upp of caning       23.24     feet below upp of caning       23.25     feet below upp of caning       23.26     feet below upp of caning       23.27     feet below upp of caning       24     feet of watch       25     feet of watch       26     feet of watch       27     feet of watch       28     feet of watch       29     feet of watch <th>Applied Itead<br/>(fect of water)<br/>11.06<br/>11.06<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05<br/>11.05</th> <th>Ype:<br/>ant head, Straddle packer<br/>located downhole<br/>retical depth calculation:<br/>Top of laterval<br/>(n) Vertice<br/>(a) Above<br/>(n) Babove<br/>(a) depth of top of laterval (n)</th> <th>3 Point</th> <th>True vertical depth calculation:<br/>Frue vertical depth (ft)<br/>Bottom 6<br/>Bottom 6<br/>Bottom</th> <th>True vertical depth calculations:<br/>Boutom of fatterval<br/>Above Boutom of fatterval<br/>Above 90.00 Botom 99<br/>Vertical depth of bottom of laterval (f)<br/>Above 100.00 Botom 99<br/>Vertical depth of bottom of laterval (f)<br/>Above 100.00 Botom 99<br/>Vertical depth of bottom of laterval (f)<br/>Above 2000 0000 Botom 99<br/>Vertical depth of bottom 100.00 Botom 99<br/>Vertical 100.00 Botom 90<br/>Vertical 100.00 Botom 90<br/>Vertic</th> <th>සින් සි ක්රී ප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප</th> <th>9<br/>1<br/>1<br/>5 Paint Moving Averages<br/>Head ∆ time<br/>vater) (minutes)<br/>0 00<br/>0 00</th> <th>Average Q<br/>(sold mine)<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.</th> | Applied Itead<br>(fect of water)<br>11.06<br>11.06<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05<br>11.05 | Ype:<br>ant head, Straddle packer<br>located downhole<br>retical depth calculation:<br>Top of laterval<br>(n) Vertice<br>(a) Above<br>(n) Babove<br>(a) depth of top of laterval (n) | 3 Point                 | True vertical depth calculation:<br>Frue vertical depth (ft)<br>Bottom 6<br>Bottom | True vertical depth calculations:<br>Boutom of fatterval<br>Above Boutom of fatterval<br>Above 90.00 Botom 99<br>Vertical depth of bottom of laterval (f)<br>Above 100.00 Botom 99<br>Vertical depth of bottom of laterval (f)<br>Above 100.00 Botom 99<br>Vertical depth of bottom of laterval (f)<br>Above 2000 0000 Botom 99<br>Vertical depth of bottom 100.00 Botom 99<br>Vertical 100.00 Botom 90<br>Vertical 100.00 Botom 90<br>Vertic | සින් සි ක්රී ප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප්රප | 9<br>1<br>1<br>5 Paint Moving Averages<br>Head ∆ time<br>vater) (minutes)<br>0 00<br>0 00 | Average Q<br>(sold mine)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      | 10 81<br>10 81<br>10 81 | 8 8 8<br>8 8 8<br>8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,00<br>0,00<br>0,00<br>0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.04<br>18.03<br>18.03                               | (0.0<br>00.0<br>00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 8 8 8                                                                                |

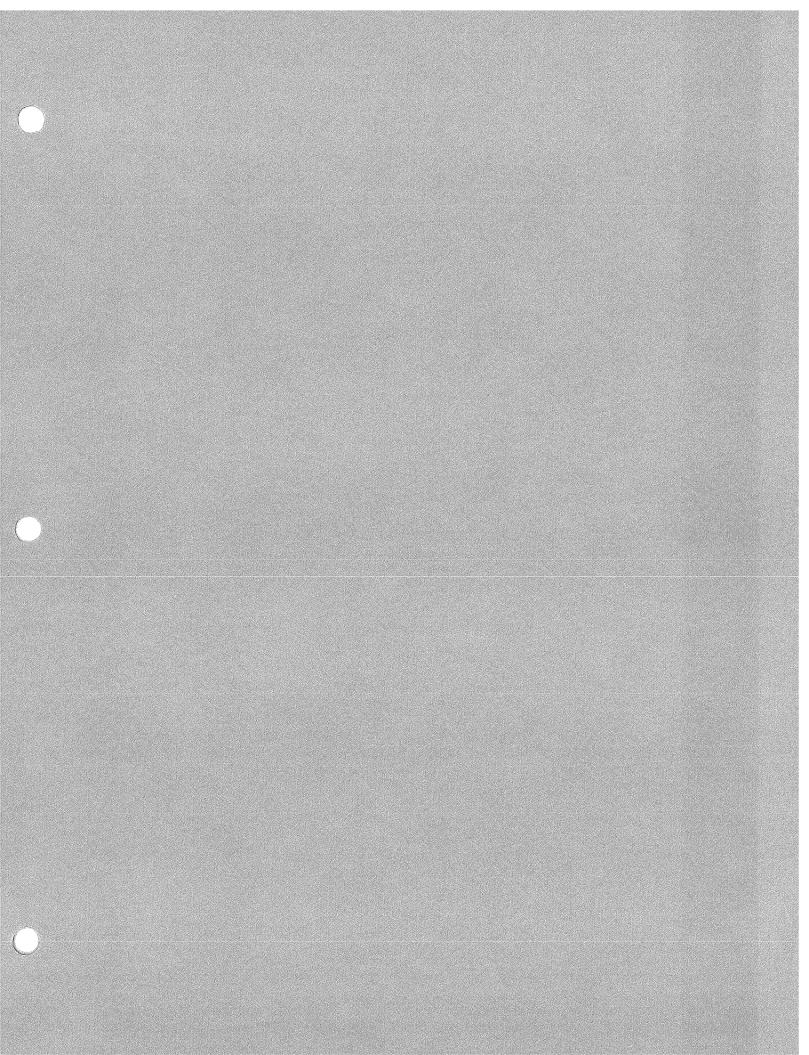
**Golder Associates** 

254014A CHA, Input Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 39.50           | 30.000           |
| 50.34           | 94.000           |




| Client      | Morrison-Maierle/CSSA |
|-------------|-----------------------|
| Site        | Miner Flat            |
| Project No. | 943-27691             |

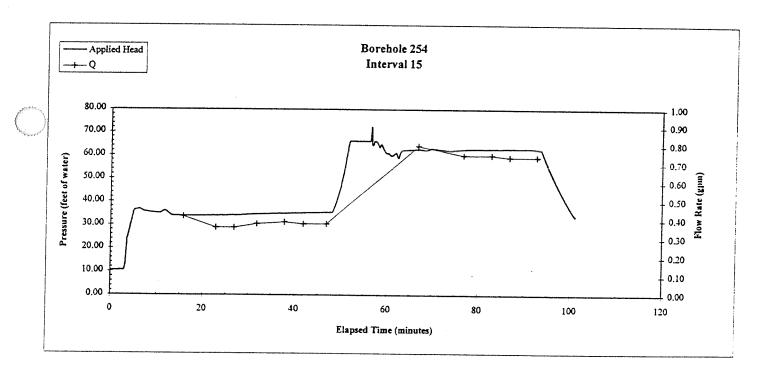

Borehole254Interval Number14

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |
|-----------------|---------------|------------------------|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |
| 39.50           | 30.000        | 4.0110                 |
| 50,34           | 94.000        | 12.5678                |



| K = 1/(    | 2πL) x (Q/h <sub>c</sub> ) x in (L/r)   | K = hydraulic conductivity(feet) $Q =$ Flow rate(ft <sup>3</sup> /m) $he =$ Applied head(feet) $L =$ length of interval tested(feet) $r =$ borehole radius(feet) | nin) |
|------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Range of I | hydraulic conductivity                  |                                                                                                                                                                  |      |
| K =        | 1.7E-03 cm/s<br>3.3E-03 feet/min        | $Q = 4.011 \text{ ft}^3/\text{min}$<br>$h_e = 39.50 \text{ feet}$                                                                                                |      |
| K =        | <b>4.1E-03 cm/s</b><br>8.0E-03 feet/min | Q = 12.568 $ft^3/min$<br>h <sub>e</sub> = 50.34 feet                                                                                                             |      |
| K =        | 1.3E-02 cm/s<br>2.5E-02 feet/min        | Trendline Slope 1.27                                                                                                                                             |      |

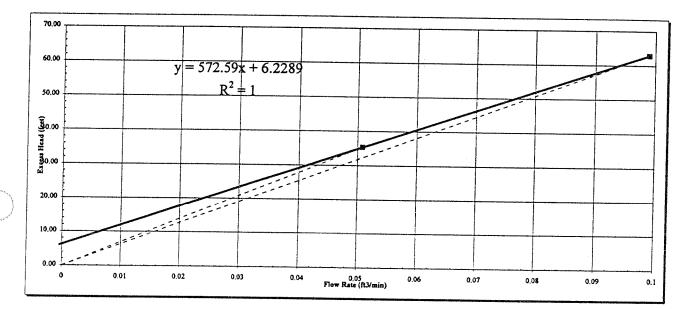



| 943-2791.130 |                                                               |                                                                        |                                                               |                                                                                                  |                                            |                         |                                  | (aimina)             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00.0        | 0.00           | 0.00                | 0.00               | 00.0     | 0.00     | 0.00     | 0.00     | 00.0     | 00.0     | 0.00                | 0.00     | 000            | 000      | 0.0      | 80       | 0.0      | 0.00                 | 00.0             | 0.00         |
|--------------|---------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|----------------------------------|----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------------|--------------------|----------|----------|----------|----------|----------|----------|---------------------|----------|----------------|----------|----------|----------|----------|----------------------|------------------|--------------|
|              |                                                               |                                                                        |                                                               |                                                                                                  |                                            | 5 Point Moving Averages | Δ time                           |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00.0        | 0010<br>6010   | 0.04                | 0.02               | 0.02     | -0.0     | 10.0     | 10.0     | 100      | 0.04     | 10.0                | (0.0-    | <b>9</b> .57   | 5 5      | 0.07     | 0.10     | 0.06     | 0.04                 | 90.04            | <b>1</b> 0.0 |
|              |                                                               |                                                                        |                                                               | cpth (ft)<br>60<br>60.99                                                                         | <b>6</b> 0.30                              | 5 Point Me              | Applied Head<br>(feet of water)  |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.47       | 10.47          | 10.47               | 10.47              | 10.48    | 10.49    | 10.48    | 10.49    | 10,49    | 10.50    | 10.51               | 0.0      | 10.49<br>10.49 | 10.49    | 10.49    | 10.51    | 10.53    | 10.54                | 10.53            | 10.53        |
|              |                                                               |                                                                        | i calculation;<br>Bottom of interval                          | Vertical Depth (f)<br>60.00 Above<br>70.00 Below 6                                               | Vertical depits of bottom of interval (ft) | 3                       | Average Q<br>(gal/min)           |                      |                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00        | 0.00           | 00.00               | 0.00               | 0.00     | 0.00     | 000      | 000      | 0.00     | 0.00     | 0.00                | 0.00     | 0,00           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00                 | 0000             | V.U          |
|              |                                                               |                                                                        | True vertical depta calculation:<br>Bottom e                  | Hole depth (N)<br>Above<br>Below                                                                 | ertical depth of by                        | 3 Point Moving Averages | A time<br>(mins)                 |                      |                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20:0-       | 0.02           | 0.0                 | 0.02               | 0.00     | 0.00     | 18. F    | 0.01     | 0.03     | 0.00     | 10.0                | 1010     | 10:0-          | 0.02     | 9.0      | 0.06     | 9.0      | 8.0                  |                  |              |
|              |                                                               |                                                                        |                                                               | -                                                                                                | M SC                                       | 3 Point                 | Applied Head<br>(feet of water)  |                      |                | 10.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.46       | 10.47          | 10.46<br>10.46      | 10.47              | 10.50    | 10.45    | 10.47    | 10.49    | 10.50    | 10.51    | 15.01               | 05.01    | 10.48          | 10.47    | 10.48    | 10.51    | 10.51    | 10.55                | 12.01            |              |
|              |                                                               | Terl Type:<br>Coustant baad, Straddle packer<br>Guyer located dowabole | in the                                                        | 90 05<br>90 05                                                                                   |                                            |                         |                                  |                      | - 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                |                     | ••••               |          |          |          |          |          | f        |                     |          |                |          |          | la Maria |          | j.<br>Nga            | 1°, -            |              |
|              |                                                               | Test Type:<br>Coustant head, Straddle J<br>Gauge located downhole      | True vertical d                                               | Hole deptk (fi)<br>Above<br>Below<br>Vertical Analy                                              |                                            |                         | Q<br>(gal/ania)                  |                      |                | er<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr<br>Alexandr |             |                |                     | *******<br>******* |          |          |          |          |          |          |                     |          |                |          |          |          |          |                      |                  |              |
|              |                                                               |                                                                        |                                                               |                                                                                                  |                                            |                         | Applied Head<br>(feet of water)  | 10.49                | 10.45<br>10.49 | 10.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.47       | 10.45          | 10.45               | 10.51              | 10.46    | 10.47    | 10.48    | 10.48    | 16.01    | 10.51    | 10.52               | 10.52    |                |          |          |          |          |                      | 10.55            |              |
|              |                                                               |                                                                        | inches<br>foet<br>feet below ton of caring                    | feet below top of curing<br>feet<br>feet<br>feet below top of curing<br>foet below top of curing |                                            |                         | Measured Head<br>(feet of water) | -0.02                | -0 02<br>-0 01 | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E0.0-       | 90177<br>10107 | <b>3</b> 9.7        | 10.0               | 10.0     | 10.01    | -0.03    | -0.02    | 100      | 0.01     | 0.02                | 0.02     | -0.03<br>2004  | 1917     | 10.0     | 0.05     | 0.05     | 0.05                 | 0.05             |              |
|              | le/CSSA                                                       |                                                                        | 3.78<br>0.16<br>55.00                                         | 65.00<br>10.00<br>155.28                                                                         |                                            |                         | Elapsed time<br>(minutes)        | 0                    | 0.06           | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (.0<br>Xr 0 | 6.42           | 0.54                | 0.6<br>7.7         | 0.78     | 110      | 8.0      | 1.14     | 1        | 1.26     | 1.34                |          | 5              | 191      | 1.74     | 1.166    | 1.98     | 2.04                 | 2.1              |              |
|              | Morri <del>son-Maie</del> rle/CSSA<br>Miaer Flat<br>943-27691 | 254<br>15<br>13-Dec-95                                                 | ţ                                                             |                                                                                                  |                                            | 01:14:51                | Elapsed time<br>(bours)          | 0.0                  | 900            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0        | 10.0           | 10.0                | 10.0               | 10.0     | 10.0     | 0.02     | 0.02     | 20.0     | 0.02     | 0.02                | 100      | 0.03           | 0.03     | 0.03     | 60.0     | 0.03     | 0.03                 | 0.0 <del>4</del> |              |
| 1000         | Client<br>Site<br>Project No.                                 | Borehole<br>Test Number<br>Test Date                                   | Borchole diameter<br>Borchole radius<br>Test section location | Length of test interval<br>Gauge Depth<br>Static Water Level                                     | General Lithology<br>Basalt<br>Stort Time  |                         | Clock<br>Time                    | 13:43:16<br>13:43:20 | 13.43.23       | 0.0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13,43,38    | 15(5)(1)       | 19/69/61<br>Carteri | 201411<br>92.04:01 | E0:14:E1 | 13:44:06 | 13:44:17 | 13:44:24 | 13:44:28 | 13:44:32 | 0794351<br>CF-FF-FF | 13:44,46 | E2:00:00       | 13.44.57 | 13.45.00 | 13:45:04 | 13:45:15 | 13:45;14<br>13:45;14 | 77.64.61         |              |

**Golder Associates** 

254013A (')1A, liqui Data

| Plot data       | used in analysis |
|-----------------|------------------|
| Applied Head    | Flow Rate (Q)    |
| (feet of water) | (gal/min)        |
| 35.32           | 0.380            |
| 62.88           | 0.740            |




| Ŋ, | Client      | Morrison-Maierle/CSSA |
|----|-------------|-----------------------|
| Į. | Site        | Miner Flat            |
|    | Project No. | 943-27691             |

Borehole254Interval Number15

Plot data

| Applied Head    | Flow Rate (Q) | Flow Rate (Q)          |  |  |  |
|-----------------|---------------|------------------------|--|--|--|
| (feet of water) | (gal/min)     | (ft <sup>3</sup> /min) |  |  |  |
| 35.32           | 0.380         | 0.0508                 |  |  |  |
| 62.88           | 0.740         | 0.0989                 |  |  |  |
|                 |               |                        |  |  |  |



| K = 1/(    | 2πL) x (Q/h <sub>e</sub> ) x ln (L/r) | K = hydrQ = Flowhe = AppL = lengtr = boreh | (feet/min)<br>(ft <sup>3</sup> /min)<br>(feet)<br>(feet)<br>(feet) |                              |  |  |
|------------|---------------------------------------|--------------------------------------------|--------------------------------------------------------------------|------------------------------|--|--|
| Range of I | ydraulic conductivity                 |                                            |                                                                    |                              |  |  |
| K =        | 4.8E-05 cm/s<br>9.5E-05 feet/min      | Q =<br>h <sub>e</sub> =                    | 0.051<br>35.32                                                     | ft <sup>3</sup> /min<br>feet |  |  |
| K =        | 5.3E-05 cm/s<br>1.0E-04 feet/min      | Q =<br>h <sub>e</sub> =                    | 0.099<br>62.88                                                     | ft <sup>3</sup> /min<br>feet |  |  |
| K =        | 5.8E-05 cm/s<br>1.2E-04 feet/min      | Trendline Slope                            | 572.59                                                             |                              |  |  |